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Artificial intelligence (AI) robots can learn from their experiences, make decisions
in real time, understand natural language and human gestures, and utilize computer
vision to perceive and comprehend their environments. Beginning with the rudimen-
tary concepts of Al, AI Robotics: Ethics, Algorithms, and Technology of Artificial
Intelligence-Powered Robots explores the intersection of robotics and physics and
emphasizes the need for strict adherence to ethical principles in relation to overall
progress and the development of humankind. Chapters on robots capable of talking,
listening, and visual perception similar to human beings are followed by discussions
of those that display emotional intelligence. This book also discusses task and motion
planning, a set of methods that help robot hardware achieve high-level goals by break-
ing down tasks into smaller, more manageable steps. Lastly, the text describes auton-
omous robots that can make independent decisions and execute tasks on their own,
utilizing sensors and Al-enabled software programmed with predefined guidelines
and data. Examples of autonomous robots are presented in a chapter on robot swarms
that operate in a decentralized, self-organizing manner through local communication
to manage disaster relief, search-and-rescue operations, warehouse logistics, agricul-
tural practices, and environmental exploration. Offering an up-to-date, expansive,
and comprehensive treatment of the vast interdisciplinary field of Al robotics, this
book will be an invaluable resource for postgraduate and doctorate students as well
as academic researchers and professional engineers working on Al-enabled robotics.

Key Features

e Explores the research frontiers and advancements leveraged by integrating
Al with robotics

e Highlights the unique challenges faced in robot vision and speech recogni-
tion vis-a-vis computer vision and standard speech processing

* Provides a state-of-the-art overview of emotional recognition, task and motion
planning, and coordinated functioning of robots in multi-robot systems
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Preface

Robotics and artificial intelligence (AI) are distinctly separate disciplines. Robotics
is a branch of engineering that focuses on the design, construction, and application
of programmable machines capable of executing instructions to perform assigned
tasks, either semi-autonomously or fully autonomously, without human intervention.
Al is a branch of computer science that develops algorithms capable of completing
tasks that would otherwise require human intelligence. While non-Al programs are
used to carry out predefined tasks, Al algorithms can learn and continually improve
themselves. Al algorithms employ techniques such as search, logic, if-then rules,
decision trees, and machine learning (including deep learning) to handle logical and
analytical reasoning, problem-solving, language processing, and other tasks.

Until quite recently, all industrial robots could only be programmed to carry
out a repetitive series of movements. Repetitive movements do not require Al
Non-intelligent robots are quite limited in their functionality. Al algorithms are nec-
essary to allow the robot to perform more complex tasks.

Al and robotics combine to create ‘Artificially Intelligent Robots’, serving as a
bridge between robotics and Al. These are robots that are controlled by Al algo-
rithms. They are built by integrating Al software into a robot’s hardware. In these
robots, robotics technology is utilized to create the physical components, while Al is
applied to program the intelligence. Al robots can be considered as intelligent auto-
mation applications in which robotics provides the body, while AI supplies the brain.

This book is about the convergence of Al and robotic technologies. The text aims
to explore the overlapping areas of Al and robotics with the goal of constructing
robots that possess enhanced functionality. AI augments the capabilities of robots,
enabling them to understand their surroundings and interact with human beings,
greet customers in shops, and perform complex tasks in manufacturing industries
such as cutting, grinding, welding, and inspection independently, thereby ensuring
the safety of workers. The subject matter is organized into 15 chapters. Starting with
the fundamentals of Al and robotics, it guides the reader step by step through a
journey of robots that can see, listen, and talk, display emotions, plan their tasks and
motions, drive themselves, and work in coordination as a team. The key benefit of
this book is that it provides up-to-date information on a rapidly emerging and rapidly
developing field of immense value, assisting human activities in inaccessible areas or
hazardous situations where human operator presence is risky.

The idea of this book is simple. It follows a synergistic approach between an Al
programmer and engineer. An Al developer or programmer, who primarily deals
with coding and software development, is often less well-acquainted with design
and engineering aspects. An Al engineer seldom cares about programming. This
is why there are often two teams involved in such projects: the design team and the
programming team. Here a petite attempt is made to bridge this gap by focusing on
the engineering and technological features of Al robotics, including its algorithmic
framework. However, it is very difficult, if not entirely impossible, to do so.
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Robotics is expected to have a large impact on society. As robotics becomes more
integrated into everyday life, ethical problems concerning its design, deployment,
and use emerge, including concerns about prejudice and responsibility. To address
the moral issues raised by robotics, numerous governments and organizations are
building legal and regulatory frameworks.

Beneficence and nonmaleficence, noninfringement on human autonomy, protec-
tion of privacy and data, and ensuring fairness, justice, transparency, safety, and
security are some of the ethical standards that must be trustworthily adhered to in
all robotics research.

The academic level of this book is graduate and above. Its target audience includes
advanced undergraduate and graduate students in electronics and computer engineer-
ing for supplementary reading, PhD students and scientists engaged in research and
development on robotics, practicing electrical, electronic, and computer engineers,
robotics enthusiasts, and hobbyists. This research and reference book is intended for
graduate students as supplementary reading, as well as for PhD students, scientists,
and engineers.

Robots are good servants but bad masters
Helping us to work efficiently and faster
Mistakes in robot design bring disaster

Our deep inner voice gives a strong gut feeling
No robot can replace a human being

Robots can only assist us

And make difficult tasks easy to hasten progress.

Let us be enthusiastic and passionate

For making robots friendly and affectionate
Benign, lovable, and affable

Trustworthy and reliable.

Robotic algorithms and technology

Must be developed with a clear methodology

Following standards of honesty, compassion, and loyalty
Fully adhering to ethical guidelines and morality
Always keeping in mind

The welfare and the best interests of humankind!

Vinod Kumar Khanna
Chandigarh, India
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About This Book

Al robotics integrates artificial intelligence (AI) techniques into robotics, enabling
robots to learn, adapt, and perform tasks beyond simple programmed actions, thereby
becoming more versatile and intelligent. This book examines the evolution of robots
equipped with AI and machine learning algorithms, enabling them to perceive their
environment, make informed decisions, and respond to situations, much like humans.
It contains 15 chapters. The following is a summary of this book’s contents, high-
lighting how Al synergizes with robotics to drive the evolution of Al-driven robotics.

Chapter 1 introduces the core concepts of Al, machine learning, and deep learn-
ing. Ethical issues are addressed to ensure the responsible development and use of
Al in ways that benefit society, with a focus on fairness, transparency, and account-
ability, while fully addressing privacy and security concerns.

Chapter 2 deals with the basics of robotics, robophysics, and roboethics, the trio
of disciplines that work together in cooperation as a unified technology. Stringent
adherence to roboethics is mandatory to ensure that robots do not pose a threat to
humans in the long or short term. Robots should be designed and developed keeping
potential hazardous situations in view.

Chapter 3 describes robotic sensors and actuators that work together in a feed-
back loop, where sensors measure physical quantities such as temperature, pressure,
light, and sound, and convert them into electrical signals. These signals are then fed
to the robot’s control system. The control system uses the received information to
instruct the actuators to take appropriate actions.

Chapter 4 explores methods for equipping robots with the ability to listen and
speak, utilizing a combination of AI processor hardware and software. This includes
microphones for input, speakers for output, and algorithms for speech recognition
and synthesis, as well as natural language processing for understanding and generat-
ing human language.

Chapters 5-7 survey the technologies for robotic vision, which stand at the fore-
front of the Al robotic revolution, providing robots with the ability to see like humans.
Unlike traditional robots, which have relied on cameras and sensors to navigate their
environments, recent breakthroughs in computer vision and Al have propelled the
development of robots with vision capabilities akin to human eyesight, enabling them
to perceive depth and color and navigate complex and dynamic environments with
precision.

Chapters 8 and 9 present the induction of emotions into robots to make them
social entities that can freely interact with humans. Artificial emotional intelli-
gence (AEI) involves endowing robots with the ability to recognize, understand, and
express emotional features, thereby facilitating natural and harmonious human-robot
interactions that are more intuitive and engaging. It’s a complex field that involves
understanding human emotions, modeling human emotions, and enabling robots to
respond appropriately.
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Chapter 10 discusses the methods employed by robots for planning their tasks
and the necessary motions required for task execution. Robots break down complex
goals into sequences of high-level actions or steps and generate the specific trajec-
tories needed for efficient and collision-free execution, considering obstacles and
constraints while optimizing for efficiency through the shortest or fastest path.

Chapters 11 and 12 outline technologies and tools for making robots capable of
autonomous operation independent of human supervision and guidance by using a
combination of sensors like cameras, LiDAR, and distance sensors to perceive their
environments and using Al algorithms and machine learning models to make deci-
sions, and execute tasks such as moving, manipulating objects, or interacting with the
environment through actuators.

Chapters 13-15 explore the research challenges faced in using teams of robots to
work cohesively and carry out mission projects. Robotic swarms work by leveraging
the collective intelligence of many simple robots, enabling them to perform com-
plex tasks such as efficiently combing for objects or resources in search-and-rescue
missions or environmental monitoring that would be impossible for a single robot.
Groups of robots work through decentralized coordination by distributing tasks
among themselves utilizing algorithms drawing inspiration from natural swarms like
bees, birds, or fish.

With an extensive bibliography for further reading, this book will be of immense
value to postgraduate and PhD students, scientists engaged in research on Al robot-
ics, as well as professional engineers working on the practical realization and uses of
Al robotics technology.
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N(sp) C C The set of feasible neighbors

|

P p Probability

P(A) Independent probability of A

P(?) Probability of A given S is true

P(S) Independent probability of S

P(i) Probability of S given A is true

Q

0 A constant

S

S A search space

SelL Possible sentences within language L
S The most likely sentence uttered by a user
SN The size of solutions, i.e., food sources
Sp Current partial solution

Sr=g An empty partial solution

W

w Inertia weight



Abbreviations, Acronyms, and Symbols XXXi

X

XGoal Goal point of the robot

X, Decision vector

X The solution numbered as ith solution with dimension j
Xinaximum.j The upper bound of solutions for the dimension j

R — The lower bound of solutions for the dimension j

X Nearest Nearest neighbor node

XNew New node

XRandom Random sampling point

Xsart Starting point of the robot

GREEK SYMBOLS

o

a Parameter to control the influence of 7;; on ants

p

p Parameter to control the influence of 7,

A

AT,-’; Amount of pheromone deposited by kth ant

n

i Desirability of state transition ij

r]ﬂ Attractiveness for the other possible state transitions

P

P Pheromone evaporation coefficient

c

c Standard deviation within each cluster in k-means clustering
T

7 Amount of pheromone deposited for transition from state i to j
T, The trail level

¢

i A random number in the interval [—1,1]

Q

Q A set of constraints applied on the variables in a combinational opti-

mization problem





https://taylorandfrancis.com

Artificial Intelligence,
Ethical Concerns, and
Social Responsibility

1.1 INTRODUCTION

In this chapter, the interlinked fields of ‘data science (DS)’, ‘artificial intelligence
(AIy, ‘machine learning (ML), and ‘deep learning (DL)* are defined. Their roles in
the extraction of knowledge and insights from data are elucidated. Software agents,
cognition, and concepts related to sentience are discussed. The arguments and impli-
cations of Turing and Searle’s thought experiments are presented. The significance
of following ethical guidelines and recommendations in Al practices is emphasized.

The interrelationship in which these basic ideas are considered places them in a
proper perspective. Intelligent software agents are autonomous programs. These pro-
grams are applied for perception, interpretation, and action on data without seeking
any guidance from the user. Cognition and sentience are two important terms related
to the mind and mental processes with distinctly different meanings. Information
processing ability, known as cognition, is distinguished from sentience, the ability to
experience feelings or sensations. The Turing test and the Chinese Room argument
are two thought experiments that explore the boundaries of intelligence displayed by
machines. Al ethics is the framework that safeguards the improper use of Al. The
reason is that Al presents several concerns and difficulties for society, which must
be controlled by formulating regulations. Strict adherence to ethics is warranted for
building safe, secure, and environmentally friendly Al systems.

1.2 DATA SCIENCE

DS is one of the four resembling and related disciplines (DS, Al, ML, and DL) that
play complementary roles toward the advancement of AI (AWS 2025). Figure 1.1
shows four ovals, with the biggest oval representing DS. A smaller oval inside it
symbolizes Al A still smaller oval within Al corresponds to ML. The smallest oval
enclosed within ML signifies DL. We shall successively clarify the terms ‘DS’, ‘AT,
‘ML, and ‘DL’ in the sequel.

Data science = Data + Science (.Y
Data is the raw information collected from various sources. It can be measurement

results from sensors. Event highlights from public news and social media sites can
be treated as raw information. Another example of raw information may be given
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FIGURE 1.1 Related fields of data science, artificial intelligence, machine learning, and
deep learning that work in collaboration to build intelligent systems.

as an economic survey conducted by agencies, etc., either in a structured format as
databases or in an unstructured format such as pictures, video, text, and so forth. It
is also called unprocessed information, primary data, source data, or atomic data.

The term ‘Science’ is derived from the Latin word ‘Scientia’ meaning knowledge.
It is the knowledge of the natural world about the physical, chemical, and biological
universe. This knowledge is acquired by a systematic procedure consisting of recog-
nition of a problem, its formulation, performing experiments, making observations,
putting forward, and testing hypothesis. The combination of data with science leads
to an interdisciplinary field. In this field, algorithms, statistical methods, and compu-
tational tools are applied to data gathered about a subject for its analysis, examina-
tion, and exploration to extract useful insights and discover hidden patterns. From
these insights, predictions are made that assist in decision-making aided by domain
expertise (Grus 2015; Balusamy et al. 2021).

Big data refers to the large and complex datasets. These datasets include struc-
tured, semi-structured, and unstructured data from social media, transportation,
and healthcare. They are too large to be easily managed and analyzed and require
advanced technologies for processing and analysis. Data mining is the process of
analyzing large datasets by cleaning, integrating, reducing, and transforming the
data. Techniques such as clustering, classification, and association are applied to find
patterns and relationships in the data that are not immediately obvious. These find-
ings help businesses predict future trends and make better decisions, e.g., analyzing
customer purchase history to identify patterns.

1.3 ARTIFICIAL INTELLIGENCE
Artificial Intelligence = Atrtificial + Intelligence (1.2)

An artificial entity is a material, thing, or process. Its principal characteristic is that it
has been developed by human beings, rather than found in nature. Intelligence is the
ability to gain knowledge, learn skills, and understand phenomena. The knowledge
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TABLE 1.1
Data Science and Artificial Intelligence
Point of

SI. No. Comparison Data Science Artificial Intelligence

1 Focus It uses data, statistics, and It uses mathematics, cognitive thinking,
computer science with the main and computer science with the aim to
intent to extract useful insights mimic human intelligence.
from data

2 Goal Its objective is making decisions It drives innovation and creativity by
based on data analysis. solving problems, improving

decision-making, and automating tasks.

3 Process It collects, cleans, and analyzes It learns from the environment or
large amounts of data. These experience in performing tasks to
methods reveal patterns and develop new models and create
discernments for transforming systems. The systems created can learn,
raw data into actionable reason, and adapt across a wide range
information. of tasks.

4 Application  Visualization of data and predictive =~ Recommendation engines, chatbots, and

examples analysis self-driving vehicles

thus gained is utilized to deal with new situations or solve complex problems.
Decisions are made for taking appropriate actions.

Al is a field of computer hardware and software engineering. It is used to con-
struct computers that can learn, perform analytical thinking, reasoning, deciding,
recommending, and executing several advanced functions. These functions include
visual perception, object recognition and categorization, understanding and trans-
lating spoken/written language, and making forecasts in such a manner that intel-
ligence similar to humans is displayed (Norvig and Russell 2022). John McCarthy
coined the term ‘artificial intelligence’ in the year 1956 (McCarthy 2007; Strydom
and Buckley 2019).

Generative Al (GenAl), or generative artificial intelligence, is a particular type of
AL It uses large Al models called foundation models. These models are built from
encoders and decoders to create new content like text, images, videos, and music.
GenAl learns from data through a process of observation and pattern matching to
create new data instances and content. It is used in arts, entertainment, technology,
communications, and healthcare. It helps to increase efficiency, productivity, and
innovation.

In Table 1.1, we look at the distinguishing features of Al and DS.

1.4 MACHINE LEARNING

(1.3)

Machine Learning = Machine + Learning

A machine is a mechanically and electrically operated device or apparatus. It is
built with several parts, each of which is assigned a defined role. All the parts of
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a machine work together in harmony to accomplish a particular task. Learning
is the process of acquisition of knowledge and skills. It results in behavioral
changes or those in attitudes, values, and preferences. ML is a sub-branch of Al
dealing with machines. These machines can learn and adapt using data, algo-
rithms, and models to work on unknown data, and draw inferences from them.
They undertake execution of tasks without any explicit instructions with gradual
improvement in accuracy (Mohri et al. 2018; Burkov 2020). An algorithm in
ML is a set of computational rules or procedures. These rules or procedures
constitute a mathematical method through which a computer learns from data to
identify patterns, discover relationships, and gain understandings to make pre-
dictions on fresh unseen data.
ML is categorized into three main types:

1. Supervised Learning (SL): It uses labeled data. By labeled data is meant the
data in which the desired output of an input is already known. The model
learns patterns based on this labeled data and thereafter, it can make predic-
tions on new data.

ii. Unsupervised Learning (USL): It works with unlabeled data. Using unla-
beled data means the model works by identifying patterns and structure
within the data. No predefined categories or labels are used.

iii. Reinforcement Learning (RL): In this learning mechanism, an agent learns
through trial and error by interacting with its environment. It receives
positive feedback for good actions. Negative feedback is received for poor
actions. Gradually, the agent optimizes its behavior to achieve a goal.

1.5 DEEP LEARNING
Deep Learning = Deep + Learning (L.4)

‘Deep’ means extending downward far below the surface. DL is the most prevalent
facet of AL It is a type of ML that involves multiple layers of artificial neural net-
works (ANNSs; hence called deep to contrast with shallow) for the transformation
of data (Voulgaris and Bulut 2018). The ANN is a model consisting of nodes called
neurons and the connections between them serving as flow paths for data and com-
putations that follow principles identical to those of biological neurons or nerve cells.
The biological neurons in the brains of animals are composed of dendrites, cell bod-
ies, and axons. They participate in the receipt of electrical signals from the external
world and the firing of signals known as action potentials to other neurons, muscles,
or organs.

Table 1.2 casts a view over the peculiarities of AI, ML, and DL side by side.

Table 1.3 sketches the domains of DL and GenAl.

1.5.1 Basic LAYERS OF A NEURAL NETWORK

A neural network comprises three basic layers:



Al, Ethical Concerns, and Social Responsibility 5

TABLE 1.2

Artificial Intelligence, Machine Learning, and Deep Learning

Artificial Intelligence Machine Learning Deep Learning

It is a broad category of It is a type of Al that uses It is a type of machine learning
computer software, including algorithms to learn from data that utilizes artificial neural
the system software and and perform tasks networks to learn from data to
application software, along autonomously. It can be used recognize complex patterns
with the supporting hardware to identify patterns in large and make predictions.
that impersonates human sets of data. It continuously
thought and decision-making. improves its performance and

accuracy through experience.

TABLE 1.3

Deep Learning and Generative Artificial Intelligence

Deep Learning Generative Al

It is a subfield of It is a subset of deep learning that creates new content

machine learning that  such as text, images, videos, audio, and computer code
uses neural networks  based on existing data. Representative techniques

to learn from large applied include generative adversarial networks, which
amounts of data to utilize two neural networks to generate and classify
make predictions or data, and variational autoencoders, learning a
classifications. compressed representation of data.

i. an input layer which receives the input data,
ii. one or more hidden layers where all computations occur, and
iii. an output layer producing the result for the supplied inputs.

The layers of the neural network contain interconnected nodes called artificial neu-
rons. All the neurons in any given layer of the network are connected with neurons
in the next layer (Figure 1.2).

1.5.2  WEIGHTS AND BIASES IN A NEURAL NETWORK

The weights and biases are the staple parameters that control flow of data through a
neural network. Weights are numerical values assigned to the connections between
neurons. The purpose of assigning numerical values to the connections is to control
the strength of connections between them, thereby regulating the extent to which an
input influences an output. They are initialized randomly.

The bias is a constant value. Biases shift the activation function by a constant
amount. The shifting ensures that the neuron is always activated by a small amount,
irrespective of inputs being zero. Weights impact the steepness of a curve. Biases
cause shifting of the curve leftward or rightward.
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FIGURE 1.2 An artificial neural network.

Each value of input data is multiplied by its corresponding weight. Then the
weighted sums are added together. The bias term is added to the summation result,
acting as an offset to the combined weighted sum. The weighted sum with bias
added to it is passed through an activation function. This function is a mathemati-
cal function, e.g., sigmoid, tanh (hyperbolic tangent), ReLU (rectified linear unit),
leaky ReLU, and softmax (softargmax or normalized exponential function). It deter-
mines whether a neuron should fire or not by introducing non-linearity to the output,
enabling it to learn complex relationships between the inputs and the output.

Hyperparameters of a neural network are essentially its configuration settings.
They control the training process of the network and are set before commencement
of training, e.g., number of neurons in each layer, the learning rate, the number of
hidden layers, and the choice of activation function, among others. They are differen-
tiated from the model parameters that are learned from the data itself.
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1.5.3 BACKPROPAGATION IN A NEURAL NETWORK

Backpropagation is a fundamental algorithm in the training of deep neural networks.
It is used for training neural networks to improve their predictions. For training a
network, first the weights of the network are initialized to random values. Then an
input vector from the training dataset is fed into the network and propagated through
it to generate an output. The difference between the predicted and the actual outputs
of the network is found. This difference is called the cost function and measures the
error. It is propagated backward from the output through the hidden layers of the
network to adjust the weights and biases in the network.

The backpropagation works in conjunction with gradient descent. The gradient
descent is an optimization algorithm to minimize the cost function. The gradients of
the cost function are calculated with respect to each parameter, weight and bias, in the
network by application of the chain rule. Using this rule, the partial derivatives of the
cost function are determined with respect to each weight in the neural network. The
partial derivatives indicate the contribution of each weight to the error. Accordingly,
the weights and biases in the network are adjusted to enhance its accuracy.

1.5.4 CATEGORIZATION OF NEURAL NETWORKS

A neural network is categorized into several types. Each of these types of networks
has specific strengths for handling different kinds of data. A few types of neural
networks are as follows:

i. Feedforward Neural Network (FFNN): It is the most basic type of network.
In this network, data flows in one direction only, and this direction is from
input to output through multiple layers. There are no cycles or loops in this
network.

ii. Multilayer Perceptron (MLP): It is a type of feedforward network consisting
of multiple layers of neurons. In this network, each neuron in a layer is fully
connected to the neurons in the next layer. Hence, it can learn complex pat-
terns in data. It is widely used for classification and regression tasks.

iii. Convolutional Neural Network (CNN): It is a neural network designed for
image processing. It contains convolutional layers to efficiently extract fea-
tures from grid-like data in images.

iv. Recurrent Neural Network (RNN): It is a neural network suitable for analy-
sis of sequential data like text or time series. In this network, information
from previous steps is retained through feedback loops.

v. Long Short-Term Memory (LSTM) Network: It is a specialized type of
RNN designed to effectively handle long-term dependencies in sequential
data. It uses memory cells to overcome the vanishing gradient problem.
This problem is a common issue that occurs when training deep neural net-
works. It happens when the gradients used to update the network weights
become very small. The small gradients prevent the weights from updating
properly, which can lead to poor performance.

vi. Generative Adversarial Network (GAN): It is a generative model that uses
two competing neural networks to produce realistic data. These networks
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are the generator and discriminator networks. The generator and dis-
criminator work in a competitive training process. The process constantly
improves the generator’s output based on the discriminator’s feedback. The
GAN produces new data that closely resembles existing data. Highly realis-
tic data like images, audio, or text are thereby created.

vii. Transformer Neural Network: It is a DL architecture used for analyzing
complex relationships in data sequences. The relationships are analyzed by
using a mechanism called ‘self-attention’. By self-attention, we mean that
the model is able to analyze and understand the relationships between dif-
ferent parts of an input sequence by assigning weights to each element based
on its relevance to the others. The ability of a transformer neural network
to capture long-range dependencies within a sequence makes it suitable for
natural language processing tasks like translation and text generation.

1.6 THEORETICAL NOTIONS AND THOUGHT EXPERIMENTS OF Al

After introducing the elementary terminology of Al in the preceding sections, we
look at a miscellany of theoretical ideas and thought experiments by imagining sce-
narios to explore concepts that are essential to grasp the fundamental principles of
Al in letter and spirit.

1.6.1 INTELLIGENT SOFTWARE AGENTS

A software agent is an autonomously operating computer program or system. The
special feature of this system is that it is endowed with capabilities of perceiving its
environment, making decisions and taking proper actions (Figure 1.3). The diagram
shows the agent equipped with sensors, signal processing circuit, and actuators. The
agent is placed adjoining the investigated environment. The signal produced under
the influence of the environment is fed to the sensors of the agent. It passes to the

FIGURE 1.3 Operational mechanism of an intelligent software agent.
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circuit associated with the sensor where it is processed. The output signal from the
processing circuit is supplied to the actuators of the agent. The actuators deliver the
required action on the environment in accordance with input signal received from it.

The agents are subdivided into four architectural groups: reactive, deliberative,
learning, and hybrid (Kirrane 2021).

1.6.1.1 Reactive Software Agents

These are modeled on the reflexive behavior of humans involving automatic, involun-
tary responses to stimuli. They have two principal components:

i. Condition-Action Rules: In these agents, perception and action are firmly
fastened by condition-action rules. This tight perception-to-action coupling
leads to a quick natural response. As soon as a specific condition is per-
ceived by the sensor of the agent, the agent immediately retrieves the action
associated with that condition. Without any delay, it applies the retrieved
action to convey the required instruction to its actuator.

ii. State: In advanced versions of reactive agents, the historical record of infor-
mation regarding preceding interactions of the agent with its environment
is maintained. This is done alongside the information about the whole envi-
ronment as a state. When the agent is supplied with an entirely new percep-
tion, it responds with an action based not only on its present perception but
also on the historical record of previous perceptions. A reactive agent is pre-
ferred in the circumstances demanding real-time decision-making where
time limit is a crucial manifestation of performance.

1.6.1.2 Deliberative Software Agents

In these agents, the environment is modeled using a symbolic language. The deci-
sions are made by logical reasoning. By reasoning logically, we mean performing
a mental activity in which premises and relations between premises are utilized to
arrive rigorously at conclusions that are implied by the premises and the relations.
As an example, if every item left outdoors is wet when it is raining, and a person has
kept his books on the outside table, logical reasoning will result in the inference that
the books are drenched with water. In order to carry out its activities, this agent needs
the following parts:

i. Symbolically Encoded Knowledge Base: This knowledge base stores
knowledge of the agent about the surrounding environment and the knowl-
edge controlling its behavior and actions.

ii. Logical Reasoning Mechanism: Perception of conditions by the sensor in
the agent and the reasoning about possible actions and their influence on
the environment serve as inputs to determine the instruction that must be
delivered by the agent to its actuator.

iii. Encoding of Goal: Desirable behaviors are described for guidance of deci-
sion-making by the agent.

iv. Utility Function: It helps the agent in performing a comparative appraisal in
view of preferences for maximization of its usefulness.



10 Al Robotics

1.6.1.3 Learning Software Agents

It is an agent in which the deliberative component is enhanced with the capability
to learn and perform better with time by learning from experience. It is especially
useful in cases where the environment is an unknown priori. The term ‘a priori’
is applied to knowledge that is considered as true, e.g., all rectangular shapes are
polygonal. A priori reasoning works by theoretical deduction, rather than observa-
tion. A learning agent must have:

i. A Performance Component: It refers to the core inner responsibilities of the

agent.

ii. A Problem Generator: It suggests actions expediting new knowledge
acquirement.

iii. A Critic: It provides feedback to the agent as a penalty or reward by com-
parison of its performance relative to a benchmark.

iv. A Learning Element: Its jobs are execution of action allocated by the prob-
lem generator and modification of the core inner functions of the agent
based on the feedback received from the critic.

1.6.1.4 Hybrid Software Agents

Here the reactive and deliberative components are arranged in horizontal and/or ver-
tical layers. The layering combines together the reactive, deliberative, and learning
features. Controllers are used for scheduling, implementation, and supervision of
activities. They also address the management of interactions between the activities.

1.6.2 COGNITION

Cognition is the combination of all processes, conscious or unconscious, involved in
the accumulation, storage, manipulation, and retrieval of knowledge. The processes
involved are perception, recognition, conception, and reasoning to make decisions
and produce appropriate responses through our senses, experience, and thought. They
underpin several routine activities across the span of life for guiding our behavior.
‘Cognition’ has its roots in the Latin word ‘cognoscere’, meaning ‘getting to know’.
The received sensory information is very vast and intricate. So, cognitive functioning
assists us in distilling this information to the essence level for easy understanding.
The physical basis of cognition resides in the around 108 nerve cells or neurons in the
brain. Each of these neurons has >10* connections with other neurons (Cambridge
Cognition 2015).

1.6.3  SENTIENCE

Sentience is the capacity of a creature, human or animal, to experience feelings, sen-
sations, or emotions, i.e., have awareness and consciousness in distinction to percep-
tions and thoughts. Sentient Al can think and feel the joy, fear, pain, and love akin to
a human being. Fish exhibits an averse behavioral reaction against toxic stimuli that
cause pain in humans and other animals (Sneddon 2009).
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1.6.4 THE TURING TesT

The Turing test is a thought experiment called the imitation game (Turing 1950). The
objective of this experiment is to determine whether a computer can interact in the
same way that a human being does. In this experiment, there are three participants: a
computer labeled as X, a person named as Y, and a human Z. The participants X and
Y are respondents while the participant Z is an interrogator or questioner. The X and
Y respondents are located in two cabins II and III, while the Z interrogator is sitting
in a separate cabin I. Thus, both the respondents X and Y are physically isolated from
the interrogator Z.

Figure 1.4 displays the arrangement made for carrying out the experiment for the
Turing test with a lady interrogator Z, a respondent computer X, and a respondent
person Y, which are occupying three separate cabins. Messages are exchangeable
between Z and X, and Z and Y.

FIGURE 1.4 Setup of the Turing test.
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The interrogator Z poses the same questionnaire to the respondents X and Y. The
person Y tries to help the human interrogator Z to correctly identify the computer X.
At the same time, the computer X tries to make the human interrogator Z erroneously
conclude that person Y is the computer.

Turing said in 1950 that after a span of 50 years has elapsed, i.e., around the year
2000, it will be possible to program computers in such a manner that they will play
the imitation game so efficiently that the human interrogator Z will be left with
less than 70% probability of correctly identifying the computer and discriminating
between the computer X and person Y after a 5-minute question—answer session
(Oppy and Dowe 2003).

Thus, the Turing test is a deceivingly easy method of demonstration of human
intelligence by a computer. A computer will be deemed as intelligent if it can take
part in a conversation with a human interrogator without the human interrogator
being able to know that he/she is in dialogue with a computer or another human. Yes,
if the computer can dupe the human interrogator to such an extent, it is obviously an
intelligent computer. The Turing test is a prime motivator in the development of Al

1.6.5 THE CHINESE ROOM ARGUMENT

The Chinese Room argument is a thought experiment proposed by the American phi-
losopher John Searle (1980) challenging the Turing claim that computers can think,
understand, and have cognition like humans. It is an objection to counter the veracity
of the Turing test.

Figure 1.5 shows the preparations that are made for the experiment. Inside a
locked room, there is a person (the insider) and a rule book or program which the
person consults for manipulation of Chinese symbols. Outside the room near its wall,
a person is standing (the outsider). Input is sent from the outsider to the insider while
the output is transmitted in the reverse direction.

FIGURE 1.5 Performing the Chinese Room experiment.
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Supposing the experiment is done on me, it proceeds as follows:

1. I do not know the Chinese language at all, either spoken or written. I am
locked in a room and presented with a large batch of Chinese writing. This
first batch is called a script. As I am inside the room, I am referred to as the
insider.

ii. I am presented with a second batch of Chinese writing by a person from
outside the room, termed the outsider. This batch is called the story. Along
with the second batch of Chines writing, I am given a set of rules or instruc-
tions in English language (which I know very well) for correlation of the
second batch with the first batch. The set of rules or instructions is known as
a program. It is the rule book. By applying these rules, I am able to correlate
one set of symbols with another set of symbols entirely from identification
of the shapes of the symbols.

iii. I am offered a third batch of Chinese writing. This third batch is called a
questionnaire. Together with the third batch, I am provided with necessary
instructions or program to correlate the symbols of the third batch with
those of the first and second batches. The program also contains the instruc-
tions enabling me to return certain Chinese symbols of given shapes called
answers in response to symbols of particular shapes given to me in the third
batch as questionnaire.

iv. I am sent stories in English. I can understand the stories and can answer the
questions posed in English about these stories in English.

v. After sometime, I get skilled in following the instructions for manipulating
the Chinese symbols and the outside people sending the programs become
so adept in writing the programs that to somebody outside the room, the
answers sent by me become indistinguishable from those given by a native
Chinese expert. No one outside is able to discern from my answers in
Chinese that I do not have any knowledge of the Chinese language.

The experiment conclusively proves that by programming a digital computer we may
betray someone to appear as understanding a language (Cole 2023). However, this
understanding is not real. It only seems to give an illusion of understanding. Staking
the claim that a programmed computer understands stories is rebutted because I
am illiterate to Chinese and so is the computer. The claim that program explains
human understanding is also refuted because both the computer and the program
are operational but no understanding results. Thus, the deficiency of the Turing test
is highlighted. It is also reiterated that computers only use rules for manipulation of
strings of symbols. They do not understand the underlying meaning of the contents
of a writing.

1.7 Al ETHICS

At this stage, we understand the capabilities of Al. By extrapolation and generaliza-
tion of its abilities, we can appreciate its enormous potential, and the likely risks
accompanying its advancement and uncontrolled proliferation. Legal ramifications
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of Al require proactive measures to protect humans from any detrimental conse-
quences of its misuse. Responsible Al takes into consideration the lawful and ethical
viewpoints for Al (Figure 1.6). The diagram shows the responsible Al block in the
center surrounded on its sides by ten distinctive features characterizing it that can be
seen as fairness, accountability, reliability, security and safety, sustainability, com-
pliance, explainability, interpretability, transparency, and privacy (Floridi and Cowls
2019; Dignum 2019).

Al ethics are a system of moral principles, guidelines, and techniques to demar-
cate between right and wrongdoings for fair development and responsible use of AL
These principles aim to benefit society en bloc by restricting Al behavior within
the bounds of human values. According to UNESCO (United Nations Educational,
Scientific and Cultural Organization 2022), it is essential to ensure conformity to the
following conditions during the entire life cycle of an Al system.

i. Human dignity, rights, and fundamental freedoms must be respected, pro-
tected, and promoted by all means. Cognizance and preservation of basic
liberties are spotlighted.

ii. Any harm or subordination of a person or community should not occur in
any way whatsoever.

iii. Interaction of persons with Al systems, such as for receiving assistance
for those who are vulnerable, can take place throughout their life cycles.
Unprotected and defenseless must be cared for.

iv. Recognition, protection, and promotion of the flourishing of the environ-
ment and the ecosystem should always be guaranteed, calling for policies
prioritizing ecological integrity.

v. Compliance with international/domestic laws is mandatory for all actors in
the lifecycle of any Al system.

FIGURE 1.6 The salient features of responsible Al
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Keen participation of all individuals or groups should be fostered without
any racial, ethnic, or social origin or similar discrimination to confirm vari-
ety and completeness.

During any stage of Al systems, the extent of lifestyle selections or ideas
should not be constrained, i.e., the breadth of such choices or concepts
should not be limited. Any deficiencies or flaws of the technological sub-
structure should be overwhelmed by international cooperation.

The interrelation of all living beings with each other as well as with the natu-
ral environment is emphasized along with the promotion of peace, justice, and
equity. Thus, tranquility, righteousness, and evenhandedness are affirmed.
Every human being is considered an integral part of a greater whole.

The possibility of any harm to human beings should be prevented by imple-
menting risk assessment methods.

. The Al technique should be science-based. It should be suitable to the con-

text besides being proportional to the targeted goal, and non-infringing on
human rights.

Any undesired safety and security risks should be avoided.

Social justice and fairmindedness should be encouraged and promoted pro-
viding motivational and advocational support.

Reinforcement or perpetuation of biased applications and results should be
eschewed. Their deliberate avoidance is mandated by moral grounds.

All people should be equitably treated by taking digital and knowledge
divides within/across nations. Digital divide refers to gaps between those
who have access to and use of information and communication technolo-
gies. Knowledge divide means disparities in access to knowledge, informa-
tion, and opportunities for learning and developing skills.

Impact of AI technologies should be ascertained with due consideration
for sustainability aspects encompassing the environmental, economic, and
social foundations.

Necessary data protection and governance mechanisms and algorithm sys-
tems must be set up for respecting the right to privacy and protection of
personal information from unauthorized access and disclosure.

Human responsibility and accountability are not replaceable by Al systems.
Transparency and explainability are essential prerequisites of Al systems
with proper balancing for privacy and security. Transparency leads to dem-
ocratic societies and mitigates corruption. In case the Al application influ-
ences the end user in a permanent or irreversible manner, the underlying
algorithm should be clearly explainable.

It is the ethical and legal responsibility of Al actors to protect human rights
according to the applicable laws.

Required impact assessment mechanisms should be developed for assur-
ance of accountability of Al systems.

Understanding and awareness of Al technologies by general public must be
encouraged, particularly with regard to the human rights and environmental
protection.
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xxii. Usage of data must be done keeping national sovereignty and international
laws in mind.

xxiii. Inclusive Al governance requires participation of all stakeholders enabling
that the benefits of Al are shared by everyone.

1.8 ORGANIZATIONAL PLAN OF THIS BOOK

To reiterate the focal theme of this book, we will be largely dedicated to learning how
Al robotics works, as well as the systematic algorithms, work plans, and procedures
designed to tackle various issues faced by robots in their day-to-day activities. The
focus will be on the algorithmic, engineering, and technological features of Al robot-
ics. This is only one side of the coin. Let us inquire, “What is the other side of the
coin?’ An equally important aspect of this subject is computer programming, the art
of instructing computers through code. This field is largely based on computer sci-
ence and related technologies. This is a complete subject in itself and requires sepa-
rate, comprehensive treatment. The material presented in this book will serve as the
foundation for the computational software development. Needless to say, all research
in robotics, like any scientific endeavor, must adhere to ethical guidelines. This
is essential to ensure the responsible development and deployment of technology.
Human rights and well-being must always be safeguarded and protected. Therefore,
adherence to ethical principles will be emphasized throughout.
This book is divided into 15 chapters as follows:

Chapter 1: This chapter introduces the fundamentals of Al and emphasizes the
establishment of clear ethical standards for ensuring the fair and above-board
practices of Al for the benefit of humanity at large in a compassionate and
cooperative manner for innovation, progress, social cohesion, stability, and
improved well-being. Al brings with it ethical concerns primarily revolv-
ing around issues like data governance, algorithmic fairness, transparency,
explainability, potential for discrimination based on data used to train Al
systems, privacy violations due to data collection, bias in decision-making
processes, and the potential for misuse of Al technology. All these issues
highlight the importance of social responsibility in developing and deploy-
ing Al systems with kindness, empathy, and altruism.

Chapter 2: This chapter presents an overview of robotics, robophysics, and robo-
ethics. Robotics is the engineering and computer science field of designing,
manufacturing, and operating intelligent programmable machines called robots
used in many industries for improving efficiency and safety. Robophysics is the
study about using physics methods like parameter space exploration, system-
atic control, and dynamical systems, and applying the laws of motion, energy,
and electromagnetism for making robots with life-like movement and coordi-
nation. Roboethics, an interdisciplinary subfield of ethics of technology com-
bining ethics, law, and sociology, considers how robots are designed to act
ethically without posing any threat to humans.

Chapter 3: This chapter covers robotic sensors and actuators. Robotic sensing
involves vision systems and cameras, LiDAR, RADAR, proximity, touch,
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force, and temperature sensors, accelerometers/gyroscopes, and chemical
sensors. Robotic actuation entails DC, stepper motors, and servo motors;
pneumatic, hydraulic, and piezoelectric actuators; shape memory alloy- and
compliant materials-based devices. Sensor fusion for comprehensive under-
standing of the environment using multiple sensors, sensor calibration to
ensure accuracy, and sensor control algorithms implementing software to
process sensory data play a leading role in robotic systems.

Chapter 4: This chapter deals with the technology used in robot assistants,
customer service chatbots, educational and medical robots enabling a robot
to generate human-like speech (text-to-speech synthesis), interpret spoken
words from human operators (speech recognition), and comprehend the
meaning behind those words (natural language understanding), allowing
for natural interaction between a robot and a person.

Chapters 5-7: These chapters describe the techniques of computer and machine
vision used by robots to perceive and interact with their environment by
object detection and recognition, feature extraction not only to perform
tasks in dangerous and hazardous conditions but also to recognize faces,
interpret expressions, and interact socially.

Chapters 8 and 9: These chapters discuss the salient aspects of robots capable
of emotional recognition, expression, self- and social awareness, adaptive
response, and contextual understanding mirroring the key aspects of human
emotional intelligence. Abilities to understand and respond to human emo-
tions in a nuanced way create more natural interactions for healthcare, cus-
tomer service, education and companionship.

Chapter 10: This chapter treats a field in robotics where a system combines both
high-level ‘task planning’ about deciding what actions to take to achieve a
goal with low-level ‘motion planning’, calculating the precise movements
needed to execute those actions, to complete the job while avoiding obsta-
cles, and coping with real-world environmental constraints. Discrete deci-
sions of task planning are merged with continuous movements considered
in motion planning. The activities are useful for robots operating in unstruc-
tured environments, like navigating a room and manipulating objects.
Challenges faced are the uncertainties, unpredictabilities, and interactional
and computational complexities encountered in practical scenarios.

Chapters 11 and 12: These chapters discuss machines that can perform tasks with-
out human aid, e.g., self-driving vacuum cleaners, cars, and industrial robot
arms, using advanced sensors, information processing, decision-making, and
movement, unlike the customary remote-controlled robots. Perception and
sensing, real-time decision-making, human-robot interaction, ethical and
legal issues, data security and privacy, and, above all, safety concerns are
decisive issues for robots that think for themselves.

Chapters 13—15: This set of concluding chapters focuses on swarm intelligence,
which is a collective intelligence of a group of robots. It is a bio-inspired Al
field replicating the behavior and cooperation of large numbers of homoge-
neous, self-organized, and decentralized agents, e.g., birds, bees, ants, and
even bacteria and micro-organisms obeying simple rules and interacting
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with each other to solve natural problems including foraging for food, prey
evading, and task allocation in colonies such as finding the shortest path
between their nest and food source or organizing their nests.

1.9 DISCUSSION AND CONCLUSIONS

This chapter presented the fundamentals of DS, AI, ML, and DL, and clarified the
interrelationships and differences between them (Table 1.4). ML was presented as a
subset of Al and DL as a subset of ML. Al theoretical topics, such as reactive/delib-
erative approach to Al design, cognition, sentience, the Turing test, and the Chinese
Room problem, were discussed.

With the rapid advancements in Al and its widespread application in data-driven
decision-making, it is expected that the Al companies will sincerely follow ethical
protocols to avoid possible infringements on human rights in order that AI’s poten-
tial benefits reach a large human population without producing any adverse effects.
Responsible Al is built on several pillars such as explainability, accountability, reli-
ability, security, privacy, and so forth. Al ethics refers to the set of moral rules that
must be followed in the development and applications of Al technology. Therefore,
Al regulations are necessary to strictly monitor and ensure that Al systems do not
exceed their limits and go beyond the achievement of a legitimate aim. Al ethical
considerations and challenges were succinctly presented.

TABLE 1.4
Terminology Introduced, Basic Ideas Learned, and the Core Issues
Raised in This Chapter

Terminology/

Basic Ideas/

Sl. No. Issues Explanation

1 Summary The terms ‘data science’, ‘artificial intelligence’, ‘machine
learning’, and ‘deep learning’ were defined. Various types of
software agents were introduced, notably the intelligent, reactive,
deliberative, learning, and hybrid software agents. Notions of
cognition and sentience were explained. Thought experiments of
Al were described, including the Turing test and the Chinese Room
experiment.

2 Ethics The ethical concerns associated with the development of artificial
intelligence raise moral dilemmas. These can be resolved by
following responsible, equitable, and reliable practices to prevent
the misuse of AL

3 Organization The organizational structure and plan of this book were outlined by
summarizing the contents of its chapters.

4 Keywords and ~ Data science, artificial intelligence, machine learning, deep learning,

ideas to neural network, weights and biases, backpropagation, software
remember agents, cognition, sentience, Turing test, Chinese Room argument,

Al ethics.
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The organizational structure of this book was laid out.

From AI, we move on to Al-driven robotics in Chapter 2, together with its sister
branches of robophysics and roboethics, which share similar activities or other char-
acteristics, whose association is of significant relevance to Al robotics.
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2 Al-Driven Robotics,
Robophysics, and
Roboethics

2.1 INTRODUCTION

In this chapter, we study three closely interlinked domains of knowledge, namely,
robotics, robophysics, and roboethics. Robotics is a technology built over the scien-
tific foundation of robophysics. Robotics must strictly adhere to the moral values of
roboethics for the welfare and progress of humanity. We begin by defining the main
terms that will help in easily following the discussion ahead.

2.2 ROBOTICS AND RELATED TERMS

2.2.1 RosoTICS

Robotics is a branch of engineering, principally mechanical and electrical engi-
neering, and computer science. It is concerned with the conception, design, manu-
facturing, operation, and applications of machines that replicate human actions.
These machines work jointly with their supporting computer and information sys-
tems for sensory feedback, as well as their control instrumentation and actuators.
They assist humans in a variety of ways to improve automation and innovation
by performing repetitive tasks with greater efficiency and accuracy than humans
(Craig 2022).

2.2.2 Rosorts

A robot is an automated machine that resembles a living creature and is capable
of independently moving by walking or rolling on wheels and performing complex
tasks. These tasks include grasping and working with objects. The robot executes its
tasks with great speed and precision with little or without human intervention.

A humanoid robot is one designed to resemble the human body in shape and form.
It is designed to interact with human environments and tools, but may still look like
a machine. An android robot is a specific type of humanoid robot that aesthetically
aims to look as human-like as possible. Often it has features like realistic skin, hair,
and facial expressions to closely mimic human appearance. All androids are human-
oid robots, but the converse is not necessarily true because not all humanoid robots
are androids.
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2.2.3 Al Rosorics

Artificial intelligence (AI) robotics, or Al-powered robotics, is robotics augmented
with a diversity of sensors, e.g., 2D/3D cameras, vibration sensors, proximity/posi-
tion sensors, accelerometers, and other sensors. These sensors feed robots with data
that they can analyze using Al algorithms and specialized AI processors. Based on
their responses to the environment and the overall mission goals, the robots make the
requisite inferences. They implement appropriate real-time actions from the infer-
ences at par with human capabilities (Lu and Xu 2017; Murphy 2019).

2.2.4 Al RosorTs

Al-enabled robots are robots embellished with Al capabilities to act on their own
from gathered information provided by their sensors and their analysis using machine
learning techniques (Govers 111 2018, 2024).

Table 2.1 brings out a comparison between Al and robotics.

Table 2.2 shows the enhanced capabilities of Al-powered robotics with respect to
simple robotics.

TABLE 2.1

Al and Robotics

Sl. No.  Point of Comparison Al Robotics

1 Primary field Computer science Electrical and
Mechanical Engineering

2 Focus on software/ It aims at designing Its objective is to develop

hardware intelligent software physical robots
3 Examples Data analysis, machine  Sensors, actuators,
learning, and deep controllers, and
learning associated electronics
4 Applications Solving problems and Automation
taking decisions by
reasoning
TABLE 2.2
Simple Robotics and Al-Powered Robotics
Point of
SI. No. Comparison Simple Robotics Al-Powered Robotics
1 Scope It is a less sophisticated field, It is an advanced technology of robots

largely devoted to mechanical
motion and related actions with
restricted use of information

processing.

enhanced with Al acting as the robot’s
brain, elevating the robot’s status
beyond that of a mechanically moving

machine.

(Continued)
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TABLE 2.2 (Continued)
Simple Robotics and Al-Powered Robotics

SI. No.
2

Point of

Comparison Simple Robotics

Focus It aims at the electromechanical
design and construction of
robots, including grippers and
movement tools.

A basic robot without Al

assistance has limited

Capabilities

information processing
capability. It can handle simple
tasks only, e.g., it can perform
pre-programmed tasks.

Examples A simple robotic arm used for
repetitive assembly tasks in

manufacturing.

Al-Powered Robotics

It is directed toward integration of
robotics with artificial intelligence
algorithms to enable robots to learn,
reason, and adapt to their environment.

An Al robot has a more extensive
information processing capability. It
can handle complex tasks
autonomously beyond simple
programmed activities. For example, it
can analyze data, make decisions in
real time, and adjust its actions based
on changing situations.

A self-driving car utilizing computer
vision and path planning algorithms to
navigate complex environments.

2.3 GENERATIONS OF ROBOTICS

Robotics is divided into five generations (Perera 2022), characterized by the evolution
of capabilities of robots from simple mechanical arms making precise, high-speed
movements in industrial manufacturing to intelligent, autonomous machines
equipped with Al The robots collaborate and co-exist with humans, augmenting
their capabilities and helping in day-to-day activities. Figure 2.1 shows the five gen-
erations of robotics: first generation: manipulator robots, second generation: learning
robots, third generation: reprogrammable robots, fourth generation: mobile robots,
and fifth generation (ongoing): Al robots bestowed with advanced AL

2.4 PARTS OF AN Al ROBOT

The Al robot has a physical structure, or body, containing many parts that enable it to
perform various operations. Figure 2.2 shows the components of an Al robot: central
processing unit (CPU), graphical processing unit (GPU), or other processor for run-
ning Al algorithms; camera, LiDAR for vision; microphone for listening to sounds
and speaker for talking; end effectors, sensors, fingers, robotic arms with actuators
(electric motors, hydraulic/pneumatic devices) for manual tasks; controller and inter-
faces (Wi-Fi, Bluetooth) for information processing and communication; and power
source for energy. The details of the parts are given below:

i. Sensors: These are akin to human sensory organs to perceive the environ-
ment, navigate without colliding against obstacles, and perform various
other chores.
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FIGURE 2.1 The lineage of Al robotics.

ii.

iii.

iv.

Vi.

Actuators: These are electric motors, pneumatic, and hydraulic devices that
convert stored energy into mechanical work to move the robot and its arms
and carry out heavy-duty work.

Robotic Arms or Manipulators: They are identical to human shoulders,
elbows, and wrists, with joints for easy movements

End Effectors: These are tools attached to the robot’s wrist that allow it to
grip objects or perform painting or welding jobs.

. Controllers: They perform analog-to-digital and digital-to-analog conver-

sion, PID (proportional-integral-derivative) control, an extensively deployed
feedback control mechanism in industrial automation; robot trajectory
interpolation, temperature regulation, etc.

AT Processors: These are integrated circuits acting as the brain of the robot
(Liu and Law 2021; Kim and Deka 2021). They are designed to handle
the mathematical operations necessary to execute Al, machine learning,
and deep learning algorithms of Al robotics. They achieve the extraordi-
narily high speed and efficiency of completing more computations per unit
of energy consumed by incorporating huge numbers of smaller and smaller
transistors, which run faster and consume less energy than larger transistors.
Unlike the traditional chips, they also have Al-focused design features to
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FIGURE 2.2 The components of a typical robot.

dramatically accelerate the identical, predictable, independent calculations
required by Al algorithms. These features include executing a large num-
ber of calculations in parallel rather than sequentially, calculating numbers
with low precision in a way that successfully implements Al algorithms but
reduces the number of transistors needed for the same calculation, speeding
up memory access and using programming languages built specifically to
efficiently translate Al computer code for execution on an Al chip.

2.5 Al PROCESSOR CHIPS FOR ROBOTICS

Figure 2.3 shows some of the processors (Mishra et al. 2023; Gover 2025) that are
either used presently or hold promises of being used in future robotics: the CPU, the
GPU, the tensor processing unit (TPU), vision processing unit (VPU), neural process-
ing unit (NPU), the associative-in-memory processor, the graph analytics processor,
and the quantum processing unit (QPU). Their salient features are described as follows.

2.5.1 CeNTRAL PROCESSING UNIT

The CPU, a general-purpose processor based on the von Neumann architecture, is
the main component of a computer. It is responsible for processing data, executing
instructions, and controlling all its operations. Owing to its flexibility, resilience, and
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FIGURE 2.3 Computer chips used in Al robots.

adaptability to a variety of computing situations, the CPU is utilized for tasks rang-
ing from simple to highly complicated.

2.5.2 GrAPHICAL PROCESSING UNIT

The GPU, a processor to handle rendering 3D graphics and pictures faster than a
traditional CPU, is specially designed with massive parallelism and enhanced pro-
grammable capabilities. It can process many pieces of data simultaneously by incor-
porating thousands of Arithmetic Logic Units in a single chip to provide improved
support for neural network operations, such as matrix multiplication. These qualities
make it a popular processor architecture in deep learning. The parallel structure of
GPUs is well suited for algorithms that process large blocks of data in AI workloads.
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2.5.3 TeNsOR ProcessING UNIT

The TPU is an application-specific integrated circuit (ASIC) designed by Google
for neural networks as a specialized processor for a high volume of low-precision
computation in neural network workloads by connecting a large number of multi-
pliers and adders directly to form a systolic array architecture. In this architecture,
several operations are performed with a single memory access by using the output
of one structural unit as the input of the next. These improvements enable a drastic
reduction of the von Neumann bottleneck. Its matrix multiply unit and proprietary
interconnect topology make it ideal for accelerating Al training and inference.

2.5.4 VisioN ProOcessING UNIT

The VPU is an Al accelerator for running machine vision algorithms such as CNN
(convolutional neural networks) and SIFT (scale-invariant feature transform), used in
computer vision, image recognition, and object detection. It includes direct interfaces
to receive data from cameras. It achieves a balance between power efficiency and
computing performance by coupling highly parallel programmable computations
with workload-specific Al hardware acceleration in an architecture that minimizes
data movement.

2.5.5 NEURAL PrROCESSING UNIT

The NPU imitates the function of the human brain by using artificial neurons and
synapses that mimic the activity spikes and the learning process of the brain. It is
used for various applications that require smarter and more energy-efficient comput-
ing, such as image processing, and face and speech recognition in robotics.

2.5.6  AsSOCIATIVE-IN-MEMORY UNIT

The processor-in-memory (PIM) or compute-in-memory (CIM) or associative-in-mem-
ory processor (AiMP)/associative processor is a non-von Neumann architecture con-
sisting of a single computer chip integrating a processor with RAM (random access
memory). It allows data to be processed directly in memory instead of being stored
on the disk. This strategy of using associative memory cells for data storage as well
as processing speeds up processing times. It is able to do so by eliminating the need
to transfer data between the processor and the memory. A resistive memory imple-
mentation uses a resistive crossbar with peripheral circuitry. The associative processor
was invented in the 1960s but was almost forgotten and cast aside until recently when
advancements in big data data created a resurgence of interest in this technology.

2.5.7 GRAPH ANALYTICS PROCESSOR

The graph analytics processor leverages a parallel processing architecture with mul-
tiple cores or processing units connected via high bandwidth inter-core or inter-unit
communication. It operates under specialized instructions, data structures, and
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indexing techniques. All these are tailored for graph algorithms that are executed by
storing in a sparse matrix format to conserve memory space.

2.5.8 QUANTUM PROCESSING UNIT

The QPU, the central component of a quantum computer processor, contains a num-
ber of interconnected quantum bits or qubits. The qubits are manipulated to compute
quantum algorithms using the unique characteristics of particles, such as electrons or
photons. The QPU works on properties like superposition, the ability of a particle to
exist in many states at the same time. It performs specific types of calculations much
faster than the processors in today’s computers called classical computers.

2.6 CLASSIFICATION OF ROBOTS

Robots are classified into myriad categories (Guizzo 2023) of which we name a few
leading ones below.

2.6.1 CLASSIFICATION BY SIZE

Robots are distinguished into three types by looking at their dimensions. Figure 2.4a
shows the classification of robots by size into categories named as nano-, micro-,
and macro-robot categories. Nanorobots are extremely small (nanometers). Precise
manipulation at the cellular level is the main aim of designing such robots. Currently,
they are mostly found in research stages. Microrobots are smaller than visible to the
naked eye, typically in the micrometer range. They are used for targeted drug deliv-
ery or microsurgery. Macro-robots are visible to the naked eye, ranging in size from
millimeters and above. Most industrial, service, and humanoid robots fall into the
macro segment. These are the traditional robots that we are accustomed to seeing.

2.6.2 CLASSIFICATION BY THE TYPE OF CONTROL SYSTEM USED

Figure 2.4b shows the classification of robots by control system into three groups,
namely, non-servo, servo, and servo-controlled categories. Non-servo robots mean
robots showing simple movement with limited control and no feedback mechanism
to monitor position. They are often used in applications where precise positioning
is non-critical, e.g., a robotic arm with only on/off switches for movement. A servo
robot has the capability of precise control over its position and movement. It utilizes
a feedback loop to monitor its current position. It can be programmed to move to
specific locations, e.g., a robotic arm with servo motors that can securely grasp an
object at a specific location. A servo-controlled robot is the same as a servo robot,
but emphasizes the active control aspect. It actively adjusts motor output based on
feedback to maintain the desired position.

2.6.3 CLASSIFICATION BY MOBILITIES

Robots are divided into four categories in accordance with their movement capa-
bilities. Figure 2.4c shows the classification of robots by their movement abilities



FIGURE 2.4 Placement of robots into different classes depending on chosen features, working style, and application sector: (a) by size, (b) by control

system, (c) by mobility, and (d) from an applications viewpoint.
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into groups labeled as robotic arms, automated guided vehicles, autonomous mobile
robots, and cobots. Robotic arms help with tasks like handling materials and prod-
ucts in factories and warehouses, their assembly, and transportation. Automated
guided vehicles move on fixed paths, which are often marked on the floor with wires,
magnetic strips, or lasers. They are preferred for carrying out repetitive tasks like
moving materials or equipment between warehouse locations or factory locations.
They reduce mistakes and accidents because they are programmed to execute their
job precisely. Cobots, or collaborative robots, are usually industrial robots that can
safely work alongside humans in a shared workspace.

2.6.4 CLASSIFICATION FROM APPLICATIONS VIEWPOINT

Figure 2.4d shows the subdivision of robots from an applications perspective into
five categories according to the sector of their intended use. These are designated
as domestic, educational, medical, industrial, and military robots. Domestic robots
are primarily used for household chores, e.g., vacuum cleaners, floor washers, and
ironing robots. Educational robots are used in classrooms to teach robotics, computer
programming, science, technology, engineering, and mathematics. Medical robots
are utilized in healthcare settings for patient care, disinfection jobs, rehabilitation,
and prosthetics. They are also used in performing critical surgeries, including ortho-
pedics and cardiac surgery. Military robots aid in defense tasks, including reconnais-
sance and surveillance, logistics, service and rescue, bomb disposal, and combat.
Industrial robots are used in manufacturing and production lines. They can move on
multiple axes and perform tasks like welding, pick-and-place jobs, and packaging.

AN EDUCATIONAL ROBOT

I am an educational robot

I'work in a school.

I follow discipline and obey all rules

1 teach the students physics and chemistry
1 teach biology and plant trees

Sometimes I teach mathematics too

In the games period, I wear my sports shoes
And take the students to the playground
Where we play and run around

Children eat cakes and buns

And have lots of fun.

A MEDICAL RoBoT

I am a medical robot

I'work in a hospital

I have a robot identity card and label

I sit with children in the nursery

Sometimes I assist doctors in microsurgery

I am delicate and do not injure anyone

1 feel happy when the surgical operation is successfully done.
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AN INDUSTRIAL RoBOT

I am an industrial robot

I'work in a factory

I draw heavy current from mains, no battery
I am very strong and can lift tons of weight
And load it on a heavy metal plate

I can put my hands in the furnace

And pull out the red-hot iron

Do not dare to copy me

Your hands will burn!

2.7 ROBOPHYSICS

Robophysics is an emerging scientific field that pursues the study of the movements
of robots in real-world environments (Calderone 2016; Collins et al. 2021; Li et al.
2023). The investigation is done by examination of the principles of self-generated
motion in mobile systems, and application of physics methods for exploration of loco-
motion in laboratory devices. Essentially, it avails the services of physics to enhance
robot movement and behavior in contrasting environments. Figure 2.5 shows typi-
cal examples of physics underlying robotics, viz., robot motion analysis (kinematics
and dynamics), understanding of friction and contact mechanics for making grip-
pers, environmental interaction scrutiny, physics-based simulation of robot behavior
and associated experimentation, and application of physical principles of mechanics,
heat, thermodynamics, optics, electricity, magnetism, and electromagnetics.

2.7.1 RoBoPHYSICS Vs. BIoPHYSICS

Robophysics bears analogy to the familiar discipline of biophysics in many ways.
Both fields are concerned with applying physics principles to complex systems.
Robots are considered more controlled and carefully designed systems, whereas the
biological organisms have an intricate and dynamic nature.

In robophysics, systems are largely mechanical or electromechanical in nature. In
biophysics, they are biological systems, which are biomolecules and cellular materi-
als. Robophysics focuses on robot motions, while biophysics tries to understand the
physical phenomena taking place in biological organisms.

Clarifying further, robophysics is the physics of artificial movements of man-made
robots. It analyzes the mechanics of robots and their environmental interactions in
an attempt to improve robotic design and locomotion. Biophysics is the physics of
natural movements in living beings. It addresses the mechanics of biological mat-
ter, e.g., membranes, muscles, and neurons. In biophysics, the attention is mainly
directed toward understanding biological processes at the molecular level for devel-
oping medical treatments.

An example aiding in visualization of robophysics is studying how a well-designed
truck carrying a heavy load moves through different terrains, such as smooth high-
ways or rough, rocky, and sandy regions. Contemplating biophysics is like studying
how a deer runs on grassy woodland.
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FIGURE 2.5 Concepts of robophysics.

2.7.2 PrINcIPLES OF ROBOPHYSICS STUDIES

The fundamental principles of robophysics studies are as follows:

i. Applying Physics Methods: A prime aspect of robophysics studies is that
techniques and approaches borrowed from physics are largely used to
inquire into locomotion in laboratory devices. Generally, specialized equip-
ment is used to analyze and measure the movement patterns of robots. The
findings of robophysics shed light on various aspects of motor control or
gait analysis of robots in different conditions.
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Exploring the Principles of Locomotion: In robophysics, simplified models
of robots are used to explore the principles of their locomotion and validate
hypotheses. Principles of robot locomotion include the following:

a. Wheeled Locomotion: It is the most popular locomotion mechanism in
man-made vehicles that finds widespread utilization in mobile robotics.
A sufficient power efficiency is achieved even at high speed. Stability is
not an issue, as in legged locomotion.

b. Legged Locomotion: Legged motion is known as gait. Legged robots
move by lifting and stepping each leg in sequence. These robots are
more versatile than wheeled robots. They can traverse many differ-
ent terrains. Their main features are increased complexity and power
consumption.

c. Snake-Like Locomotion: Snake-like robots are very effective in con-
fined, narrow, and irregular environments.

d. Optimal Behavior: The optimal behavior for bipedal locomotion on two
legs is slow-speed walking and high-speed running. The same for qua-
drupedal robotic locomotion using four limbs is slow-speed walking,
intermediate-speed trotting, and high-speed galloping.

e. Control and Sensing: The internal state and configuration of the robot
are measured by proprioceptive sensors (accelerometers, gyroscopes,
and optical encoders), while the information about the external envi-
ronment and contact interactions is gathered by exteroceptive sensors
(vision, tactile, ultrasonic, and temperature). Proprioception, or kines-
thesia, represents a body’s ability to sense its position and movement in
space for its balance, coordination, and motor control. Exteroception is
the awareness of external stimuli to perceive and interact with the world
around a body.

Performing Systematic Experimentation and Integrating Experiment,
Theory, and Computation: Robophysics systematically integrates experi-
ment, theory, and computation. Its studies rely on well-planned and orga-
nized experimental investigations coupled with theory and modeling.
Real-world experiments conducted in parallel with theoretical formulation
and analysis, and strongly supported by computational modeling, provide
an in-depth understanding of a phenomenon. The experimental data verify
the theoretical model and modify it, if necessary. Further experiments are
designed based on the feedback received from modeling. New insights are
obtained by the interpretation of results. Different robot designs and control
strategies are tested for evaluation in virtual environments. Computational
modeling and simulations are done before building physical prototypes of
efficient and stable legged robots.

Using Simplified Robotic Devices: Robophysics studies use simplified

robotic devices in controlled laboratory settings to complement the study

of complex robots in complicated situations. A simplified robotic device
is a basic, single-function robot arm. This device displays movement capa-
bilities within a restricted range. Precise tasks handled by it are picking up
specific items, dispensing liquids, and transferring small samples between
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containers. All these tasks are performed within a designated area with con-
trolled parameters under minimal environmental variation. Complex robots
in complicated situations refer to robotic systems designed to operate in
environments with many variables and uncertainties. They require advanced
capabilities in the form of sophisticated perception, decision-making, and
adaptation capabilities to navigate and perform tasks successfully. They
often include scenarios with multiple moving parts, unpredictable interac-
tions, and dynamic environments. Examples of such robots are the surgi-
cal robots performing intricate procedures in hospitals, and autonomous
vehicles navigating busy city streets. Humanoid robots interacting socially
in a crowded space too fall in this class of robots. So also, the swarm robots
working in close coordination and mutual cooperation to explore a vast,
unknown terrain. Essentially, all these robots work beyond simple repetitive
tasks. They are able to handle complex real-world scenarios with high levels
of autonomy.

. Parameter Space Exploration: Robophysics studies use parameter space

exploration, systematic control, and techniques from dynamical systems to
observe locomotor successes and failures. The parameter space is the set
of all possible values for the parameters that are specified to define a math-
ematical model. It is also called weight space. Parameter space exploration
is the process of analyzing the patterns of changes in the dynamics of a
system with variations in its parameters.

Interaction with Soft Materials: Robophysics studies discover principles of
interaction of active or programmable objects with soft materials like mud,
sand, grass, and litter. Soft materials comprise the stretchable elastomers
and textiles that are pasted over the skin of a robot without interfering with
its movement. Ferromagnetic soft materials self-actuate in response to mag-
netic fields. This property makes them remotely controllable and compat-
ible with biological tissues. Silk fibroin sheets with Ag nanowires are used
in highly sensitive stretchable capacitive sensors for low-pressure detection.

2.7.3  SIGNIFICANCE OF ROBOPHYSICS

The significance of robophysics is multifaceted:

i.

Bridging Disciplines and Improving Robot Design: The significance of
robophysics is that it acts as a bridge connecting robotics technology with
the theoretical framework of physics. The merger of the fields of robotics
and physics allows engineers to leverage insights from physics to solve
complex robotic challenges. A deep understanding of the physical princi-
ples behind robot movement in different terrains and situations is essential.
It becomes more relevant particularly in reference to complex environments
such as soft materials or non-uniform surfaces. The reason is that it allows
robot dynamics, their locomotion, and interactions with their surroundings
to be analyzed through a more fundamental perspective. It helps research-
ers in designing more efficient, adaptable, and complex robots to work
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in challenging environments. Researchers analyze the physics of robot
locomotion to identify the critical design parameters that optimize move-
ment, stability, and energy efficiency of robot motion in various terrains.
Applying physics concepts like dynamics, mechanics, and control theory,
innovative designs and control strategies are developed for robots. These
designs are not readily apparent through purely engineering approaches.
Robophysics inspires new areas of research within physics itself by survey-
ing the dynamics of novel robotic designs, and opens doors to investigate
novel concepts. An example is the emergent behavior in robotic systems,
where complex behaviors originate from interactions between individual
robot components.

Understanding Complex Interactions: Robophysics helps in studying the
interaction of robots with their environments. These include factors such as
friction, terrain variations, and contact forces. Their understanding leads to
the development of better control algorithms for robot movements in varied
circumstances.

Biomimicry Inspiration: The physics of locomotion in animals and other
natural systems is studied. Robophysics fosters the design of robots that
mimic biological movements. On this basis, more versatile robots with effi-
cient and adaptable movement patterns are fabricated.

Exploration of New Physics Questions: Investigating the dynamics of novel
robotic systems often leads to the discovery of new physical phenomena. It
also gives impetus to theoretical advancements in several areas, such as soft
matter physics and nonlinear dynamics.

2.7.4  AppLICATIONS OF ROBOPHYSICS

Robophysics finds multifarious applications. The prominent among them are
follows:

i.

ii.

iii.

iv.

Designing Legged Robots for Rough Terrains: Robophysics helps in analyz-
ing the physics of leg movements on uneven surfaces. The analysis deals
with how animals walk, run, and jump. It helps to optimize gait patterns
for stability and efficient locomotion of robots. Applying this knowledge,
efficient and stable legged robots are realized.

Developing Soft Robots: Concepts of soft matter physics are applied to
design robots with flexible bodies. Such robots can adapt to complex envi-
ronments. Using the physics of soft materials, robots with compliant bodies
are created that can adapt to complex environments.

Making Swimming Robots: Notions of fluid dynamics are used to design
underwater robots that exhibit flexible swimming motions.

Simulating Robot Behavior in Complex Environments: Mathematical simu-
lations are performed on computational models to study the interaction of
robots with various terrains and obstacles. Physical prototyping of robots is
done by utilizing the advisories derived from the simulations.

as
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2.8 ROBOETHICS

Roboethics or robot ethics is an interdisciplinary field at the intersection of robot-
ics, computer science, psychology, and philosophy. In this field, the ethical, social,
humanitarian, and ecological aspects of robotics are deliberated upon (Torresen
2018; Bartneck et al. 2021). It is treated as an extension of machine ethics. It is essen-
tially a subfield of ethics of technology, specifically information technology that is
concerned with the ethics of human behavior toward advanced robots. Particularly,
it discusses the legal and socio-economic concerns about robotics posing a threat to
humans in the long or short run. It aims to ensure that robots are morally designed
and used for the benefit of humanity. The safety of the human race must always
be kept at highest priority, e.g., momentous ethical issues arise in social assistive
robotics (Boada et al. 2021). Ethical implications of integration of Al in robotics and
healthcare demand scrupulous consideration (Elendu et al. 2023).

2.8.1 IsaAc Asimov’s Laws oF RoBorTics

Seeking to create an ethical system for humans and robots, the science fiction author
Isaac Asimov devised the laws to be followed by robots. He proposed these laws in
his stories in anticipation of the likely nuisance of developing intelligent robots, and
the consequent technical and social problems (Figure 2.6). Despite the fact that they
are not scientific laws, they have received wide attention and recognition. This is
because they provide ethical guidelines to robots preventing them from malfunction-
ing in a dangerous manner (Asimov 1942):

Zeroth Law: The robot can neither inflict any harm on mankind nor by their
inaction allow mankind to come to harm.

The law underscores the significance of welfare of humanity as a whole
over that of an individual human being.

First Law: The robot must neither injure a human being nor by inaction allow
a human being to come to harm.

The primary directive of this law is that a robot must never harm a human
being, either deliberately or unintentionally. The secondary directive of this
law is that a robot cannot stand by watching carelessly and allowing harm to
befall a human being if it is capable of preventive intervention. Figure 2.6a
illustrates laws 0 and 1 in the form of robot’s friendship with and protection
for humans.

Second Law: The robot must follow the orders given to it by human beings as
long as the orders do not conflict with the first law.

The robots are primarily designed to follow humans and execute their
orders in order to ensure human safety by preventing humans from being
harmed by the actions of robots. The underlying connotation of this law is
that the robots are intended to be tools for human assistance. They operate
by following human orders and working under their supervision and con-
trol. Figure 2.6b illustrates law II by showing a robot obeying the orders of
the human operator.
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Third Law: The robot must protect its own existence unless the protection does
not conflict with first or second law.
The law implies that the robot must avoid any actions or situations that
could cause it to harm itself in any way. Figure 2.6c illustrates law III by
showing a robot fighting for defending its existence.

FIGURE 2.6 Visualization of laws of robotics propounded by Isaac Asimov: (a) law 0 and
law I, (b) law II.
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FIGURE 2.6 (CONTINUED) (c) law IIL

2.8.2 ORDER OF PRIORITIZING OBEYANCE OF THE LAWS

The zeroth law takes precedence over the other three laws of robotics. It mandates
robots to prioritize humanity as a whole over any individual. This law allows robots
to override human commands if they can inflict long-term harm to humanity.

When the remaining three laws conflict, the first law takes precedence. Then the
second law takes precedence. Finally, the third law of self-preservation and the safety
of the robot is pursued. Suppose a human being orders a robot to attack another
human being. Then the robot will not follow the order because the first law takes
precedence over the second law. Notwithstanding, if a human being orders a robot
to disassemble itself, the robot will obey the order. This happens because the second
law takes precedence over the third law.

The aims and scope of Al ethics and roboethics are expounded in Table 2.3.

2.9 UNDERSTANDING THE INTERRELATIONSHIP AMONG
ROBOTICS, Al ROBOTICS, ROBOPHYSICS, AND ROBOETHICS

2.9.1 BREAKDOWN INTO SUBDOMAINS

Robotics is a broad field. It encompasses the design, construction, operation, and
application of robots. The necessary mechanical systems, electrical components,
sensors, actuators, and control algorithms fall under robotics. Al robotics is a spe-
cialized subfield within robotics in which robots are empowered by Al techniques.
Robophysics is a specialized area. It is placed within robotics. It focuses on apply-
ing physical laws like mechanics, dynamics, and control theory to understand and
optimize robot movement, manipulation, and interaction with the environment.
Roboethics is an interdisciplinary field. It examines the ethical implications of
robotic technology. The examination includes questions about robot autonomy,
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TABLE 2.3
Al Ethics and Roboethics
Point of
SI. No. Comparison Al Ethics Roboethics
1 Scope It studies the ethical It specifically examines the ethical concerns
implications of artificial related to the design, development, and use
intelligence, including its of physical robots, often including how
algorithms and humans interact with them.
decision-making processes.
2 Focus It can apply to physical and It places significant emphasis on the physical
non-physical systems. form of a robot.
3 Set/subset Al ethics is a broad field. Roboethics is a subset of Al ethics that
relationship focuses on the physical embodiment of Al
in robots.
4 Issues Data privacy, bias in Potential harm caused by robots, robot
discussed algorithms, and transparency. — autonomy, and the robot-human
interactions.
5 Example Ensuring fairness in The central issue of paramount importance is:
concerns algorithmic decision-making, Should a robot be given the ability to make
and preventing biased data independent decisions? Can it pose a danger
from influencing Al to humans?
outcomes.

responsibility, safety, privacy, and their potential societal impacts as robots become
more sophisticated.

2.9.2 INTERRELATION OF RoBoTics witTH RoBOPHYSICS AND ROBOETHICS

Robophysics is a scientific foundation that deals with the design and development of
robots within the field of robotics and its specialized sub-branch Al robotics, while
roboethics considers the ethical considerations that arise from these advancements
in robotics.

2.9.3 AN ExampLe of Al RosoTics, ROBOPHYsICS,
AND ROBOETHICS INTERRELATION

In robotics, we aim at designing a robotic arm for a factory assembly line. In Al
robotics, we make a self-driving car. In robophysics, we analyze the forces and
torques acting on a robot’s joints to optimize its movement, calculating the optimal
trajectory for a robot to navigate a complex environment. In roboethics, we debate
whether an autonomous robot, such as an Al-powered robot, should be programmed
to prioritize human life over its own, considering the potential for bias in Al deci-
sion-making systems.
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2.10 DISCUSSION AND CONCLUSIONS

This chapter dealt with the basic principles of robotics, robophysics, and the philoso-
phy of roboethics (Table 2.4). Importance of roboethics, the ethical, legal, and social
facets of robotics were emphasized, describing the ways in which robots must be
designed in order that they act and behave ‘ethically’.

Physics plays a key role in the dynamics and kinematics of robot motion. This
chapter reviewed the basics of robophysics, the study of robotic movement in com-
plex real-world environments using the methods of physics and theoretical models
(Aguilar et al. 2016). Robophysics is an emerging scientific discipline that deals with
the motion of robots analogous to biophysics, which studies the motion of biological
systems. It is concerned with problems at the interface of nonlinear dynamics, soft
matter, control, and biology. Its objective is to examine successful and failed locomo-
tion in simplified robotic devices to create robots that have life-like abilities.

TABLE 2.4
Looking at Significant Themes of This Chapter and the Findings

Significant

SI. No. Themes Explanation

1 Robotics The meanings of common terms like ‘robots’, ‘robotics’, ‘Al robots’,
and ‘Al robotics’ were explained. Chronologically, five generations of
robotics are distinguishable. The primary components of an Al robot
are sensors, actuators, arms or manipulators, end effectors,
controllers, and Al processors. Important Al processor chips used in
robotics include the central processing unit, the graphical processing
unit, the tensor processing unit, the vision processing unit, the neural
processing unit, the associative-in-memory unit, the graph analytics
processor, and the quantum processing unit. A classification of robots
was made according to size, by the type of control system used, by
mobility, and from an application viewpoint. The interrelationship
among robotics, Al robotics, robophysics, and roboethics was brought
out by breaking them into subdomains, and illustrated with an
example.

2 Robophysics Robophysics is an emerging scientific discipline in which physics
methods are applied to enhance robot movement and behavior. The
analogy of robotics with biophysics is drawn. The principles of
robophysics studies were described. Its significance and applications
are mentioned.

3 Roboethics Roboethics deals with the ethical, social, and humanitarian
implications of robotics. Isaac Asimov’s laws of robotics were
enunciated, followed by an understanding of the order in which
obedience to the rules is prioritized.

4 Keywords and ~ Robotics and robots, Al robotics and Al robots, Al processor chips,
ideas to CPU, GPU, TPU, VPU, NPU, AiMP, graph analytics processor, QPU,
remember robophysics, biophysics, roboethics, Isaac Asimov’s laws.
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Robophysics studies have become essential for robotics because the present-day
autonomous robots possess limited locomotion capabilities and cannot robustly navi-
gate in situations that require climbing on vertical surfaces, such as trees and hills,
or moving on deformable surfaces like sand and mud. The ‘robophysics’ approach,
which involves a systematic search for novel dynamical principles in robotic systems,
can assist computer science and engineering, which have proven successful in less
complex environments.

Anthropomorphism is concerned with ascribing human features to non-human
things, and seeks to develop robots with human-like characteristics. Principles of
natural phenomena must be emulated in robotics because laboratory-created robots
have to work in the real-world environment, where they must have cognition, sensing,
and decision-making capabilities, which living creatures have acquired over long
periods of evolution.

At this stage, the reader is acquainted with the fundamental concepts of Al and
robotics, and it is time to look into the working of robotic systems. At the core of any
robotic system is a combination of two key components: sensors and actuators. The
wide-ranging robotic applications permeating and spanning from industrial manu-
facturing automation to prosthetic systems function with a high degree of autonomy
through the harmonious integration of these components in robots. Chapter 3 will
provide a brief description of the main sensors and actuators used in robotics.
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Robotic Sensing and
Actuation Techniques

3.1 INTRODUCTION

Robotics works by the confluence of sensing, actuation, and electronic control. This
chapter dwells upon the sensors, actuators, and electronic systems that are frequently
used in robotics (Dahiya et al. 2023).

3.2 SENSING AND PERCEPTION BY ROBOTS

Sensing and perception are the abilities of a robot to gather information about its
surroundings using various sensors. A few examples of sensors are cameras (vision),
LiDAR (light detection and ranging), vision sensor, light sensor, SONAR (sound
navigation and ranging), microphones (audio sensors), accelerometers (motion), tilt
sensor, tactile or touch sensors, force sensor, pressure sensor, proximity sensor, tem-
perature sensor, global positioning system (GPS), digital magnetic compass, current
and voltage sensor, and chemical sensors.

The various sensors in a robot work around the clock, all day and all night, to
record data about the environment in which the robot is deployed. This is similar to
the non-stop perception of environments by human beings through their senses of
sight, odor, taste, touch, and hearing. The robot’s hardware processes the collected
information about temperature, light intensity, distance, and chemical composition,
using Al algorithms to extract meaningful information like object location, degree of
hotness, distance, shape, texture, and movement. The information processing allows
a robot to understand and interact with its environment effectively in a controlled
manner in order to make informed decisions and actions (Guo et al. 2006; Wu et al.
2022). These are the decisions made and actions taken after gathering all the useful
information about a subject, considering potential benefits and risks and aligning
with the goals.

3.3 ACTUATORS AND END-EFFECTORS OF ROBOTS

3.3.1 ACTUATORS

Actuators of robots are equivalent to their muscles, by which they convert their ener-
gies into mechanical motions. They are components producing a force, torque, or
displacement to perform different types of actions for execution of tasks. The tasks
involve handling of objects and carrying out numerous activities during the interac-
tion of robots with their environment. A common actuator is the electric motor. A
powerful precision servo motor offers a wide range of motion control mechanisms.
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Different forms of pneumatic, hydraulic, and electric actuators are extensively used
in robotics for industrial automation. They help state-of-the-art humanoid robots in
rotating their joints and simulating complex natural walking. The vast variety of
robotic actuators encompass alternating current (AC) and DC servo motors, stepper
motors, synchronous motors, pneumatic motors, linear DC actuators, hydraulic and
pneumatic cylinders, ultrasonic piezoelectric actuators, and so on.

3.3.2 END-ErrecTORS

End-effectors of robots are the peripheral devices, mechanical or electromechani-
cal. They range from legs and wheels to arms and fingers. Various implements are
attached to a robot’s wrists, enabling it to interact with and manipulate its physi-
cal environment. They are broadly classified as grippers and advanced-function-
ality process tools. Grippers of different shapes, sizes, and configurations are used
for grasping and moving objects. Examples of process tools used by robots are as
follows:

i. The welding tools used in the automotive industry,
ii. The grinding and sanding tools for smoothing and finishing the surfaces of
workpieces,
iii. The cutting tools, like blades for material removal and shaping,
iv. The painting tools with brushes for applying consistent layers of paints and
dispensers or syringes with nozzles, and
v. The valves are for controlled liquid and adhesive flow.

Table 3.1 enlists the distinctive duties performed by sensors and actuators used in
robotics.

3.4 ROBOT CAMERAS

The lens assembly of the camera focuses light onto an image sensor for the conver-
sion of optical signals into electrical signals. The camera utilizes complementary-
metal-oxide-semiconductor (CMOS) or charge-coupled device (CCD) technology.
Each pixel of the sensor takes care to cover a small area of the captured scene. The
analog signals are converted to the digital domain by an analog-to-digital converter
for processing by the robot’s computer. A robotic camera to detect the desired sub-
ject, track, and focus it is reported (Rehman et al. 2023); the camera’s position is
driven and controlled through movable motors.

3.4.1 Tvypes oF RoBoT CAMERAS
Several types of robot cameras have been developed:
i. 1D or Line-Scan Camera: It captures visual data along a line. Hence, it is

useful for inspection of movements of objects on platforms like conveyor
belts. A 1D camera is simplest and the least computationally intensive.
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TABLE 3.1
Responsibilities of Robotic Sensors and Actuators
Point
SI. No.  of Comparison Sensors Actuators
1 Definition Sensors are devices that detect and Actuators are components that
measure robot’s environmental take electrical signals from
conditions, like detecting light, sensors and translate them
pressure, or estimating distance. The into physical actions. They
conditions are detected by converting allow the robot to move
the concerned physical parameters around in its workplace and
into electrical signals. interact with its surroundings.
2 Function As implied by the name, sensors In accordance with the name,
‘sense’ the environment. actuators ‘act’ upon the
information received from
Sensors.
3 Output Sensors produce electrical signals as Actuators yield physical
output. motion as output.
4 Examples Vision sensors (cameras), proximity Electric motors, e.g., servo

sensors, force sensors, temperature
sensors, ultrasonic sensors, etc.

motors; pneumatic cylinders,
hydraulic actuators, etc.

ii. 2D or Area Scan Camera: This is a standard camera that gives a flat planar
image with length and breadth dimensions. From a planar image, the shape
of the object is easily recognized, as well as its position is located. A 2D

camera is moderately complex.

iii. 3D or Depth Camera: Stereo vision or laser scanning techniques are used to
reconstruct the geometry of an object in 3D. A 3D camera is highly sophis-
ticated and requires extensive computational capabilities.

a. Stereo Vision: Two cameras placed at a small distance apart acquire
images of the object from two viewpoints. Depth information is
obtained from the pixel disparities between the two images.

b. Laser Scanning: Precise distance measurements of different points on
the object from the robot are done by illumination of the object with a
laser beam. Measurements of the time of return of the reflected laser
beam are made from each point. An accurate 3D model of the object is

built from these measurements.

3.4.2 CoNSIDERATIONS FOR RoBOT CAMERA MOUNTING

Vital issues to be considered during the mounting of a robot camera are as follows:

i. Selecting the Type of Camera to Be Used: A decision among 1D, 2D, and

3D cameras is made depending on the application.

ii. Choosing the Location of the Robot where the Camera Is to Be Fixed: The
camera is fixed either on the wrist or the forearm of the robot. The camera is



Robotic Sensing and Actuation Techniques 45

sometimes attached to the base of the robot or even on a separate dedicated
fixture. The choice of mounting site is dictated by the desired field of view.
iii. Picking the Appropriate Lens: This is determined by the field-of-view
requirement.
iv. Calibration Procedure to Be Followed: It depends on the control and vision
system needs.

3.4.3 TyricAL MOUNTING CONFIGURATIONS OF RoBOT CAMERAS

There are two principal configurations in which the robot cameras are mounted,
namely:

i. Eye-in-Hand: In this configuration, the camera is fitted directly to the
end-effector of the robot. The camera moves with the end-effector provid-
ing real-time feedback for achieving accuracy in crucial grasping and con-
trolling jobs, e.g., pick-and-place operations. However, the perspective of
the camera continuously changes in this configuration causing difficulty in
camera calibration.

ii. Eye-to-Hand: In this arrangement, the camera is fixed and stationary. It
watches the workspace and actions of the robot from its fixed viewpoint. The
advantage gained by this positioning of camera is the resulting stable angle
of view. Although the vision processing becomes relatively simple, extra cal-
culations need to be done to find the position of the object with respect to the
arm of the robot. A robot engaged in object recognition or navigation tasks is
greatly benefited by the broader field of view offered by such camera fixation.

3.4.4 ArpLicATIONS OF RoBoT CAMERAS

Among the many applications of robot cameras, the following are the most common:

i. Industrial Pick-and-Place Robots: These camera-equipped robots work on
assembly lines.

ii. Warehouse Product Identification/Sorting Robots: These camera-wearing
robots make warehouse tasks easier.

iii. Medical Surgery-Assistance Robots: The visual feedback provided by cam-
eras to these robots is very helpful to doctors in performing minimally inva-
sive surgeries.

iv. Robots Driving Autonomous Vehicles: The robots installed on these robots
detect pedestrians, read traffic signs, and lane markings. So, they are able to
guide the vehicle on a safe journey.

3.5 ROBOTIC LIDAR SENSOR

The robotic LiDAR sensor is a distance measurement sensor that the robot uses for
measuring its separation from a target. It provides the robot with real-time informa-
tion about its surroundings. Therefore, it functions as the eyes of the robot to navigate
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its environment. Furthermore, the LiDAR is an active remote sensing system. It itself
generates energy in the form of light to illuminate the target area from which data is
to be collected. This aspect differentiates it from a passive system. A passive system
relies on naturally occurring radiation for distance measurement.

3.5.1 PriNcIPLE OF OPERATION

The robot’s LiDAR sensor is mounted on a cart carrying a load (Figure 3.1). The
LiDAR sensor consists of a laser diode (transmitter), a photodiode (receiver), and a
scanner (rotating mirror or prism) with associated optical assembly. A pulse genera-
tor triggers the laser diode. The LiDAR sensor emits a beam of light as a laser pulse.
This laser pulse is reflected from the objects in the environment such as the surfaces
of roads, ground, buildings, and trees. Reflected light from the obstacle is detected by
the photodiode. Incident and reflected light beams are shown. The electrical signal
produced in the photodiode is amplified, digitized by an A-to-D converter, and fed to

FIGURE 3.1 The principle of LiDAR is illustrated with reference to its use for distance
measurement by a robot from a load-carrying cart to an obstacle. The inset shows the inner
structure and components of the LIDAR. The formula for distance calculation is given.
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a processing unit. The processing unit calculates the distance between the robot and
the obstacle and provides the distance output. The distance is found by measuring the
time ¢ taken by the laser pulse reflected from an object called the back-scattered light
to reach the LiDAR sensor. The formula used in the calculation of distance is derived
by noting that the laser pulse has traveled from the LiDAR sensor to the object and
returned by rebounding. From knowledge of velocity ¢ of light, the distance d of the
target from the robot is calculated by the formula:

d="= 3.1)

where the factor 2 accounts for the two-way journey of light from the robot to target
and back.

3.5.2 PriNciPAL COMPONENTS OF A LIDAR SENSOR

The LiDAR has four main components:

i. Laser Source: The laser source emits pulses of near-infrared (IR) light.

ii. Scanner: It performs a continuous scanning of the environment by rotating
and oscillating to point in different directions to direct the laser beam in
different directions.

iii. Detector: It contains a light sensor by which it converts the reflected light
from distant objects into electrical signals.

iv. Processing Unit: The electrical signals produced in the detector are ana-
lyzed in the processing unit to calculate distances. A 3D point cloud is gen-
erated providing a 3D representation of the scanned area, and precise X, Y,
and Z coordinates for each point. From the detailed 3D maps thus gener-
ated, the robot is able to perceive its surroundings accurately.

3.5.3 ArrLicaTIONS OF LIDAR Sensor IN RoBoTics

The LiDAR sensor is the key element of several robotic systems, where it is used for:

1. Object Detection:

a. Geometric Shape-Fitting: Ground segmentation and plane-fitting algo-
rithms are used to determine the 3D geometry of the objects in the point
cloud.

b. Deep Learning: Convolutional neural networks are used to identify
critical features in images to accurately detect objects.

ii. Simultaneous Localization and Mapping (SLAM): It allows a robot to con-
struct a map of an unknown environment and track down its own position
within that environment.

iii. Collision Avoidance: The robot uses path planning algorithms, e.g., A*

(A-star), Dijkstra’s algorithm, and rapidly exploring random trees (RRT)

to calculate and find routes along collision-free paths. Global path planning
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calculates the best path, while local planning determines the best speed of
the robot’s movement. The collision Jacobian matrix relates the approach-
ing velocity of the links to the obstacles with the end-effector velocity.
Accordingly, the end-effector velocity is modified to avoid smashes against
obstacles (Kaneko et al. 1999).

iv. Navigation: By careful object detection, SLAM technique, and path plan-
ning, the robot can move about easily inits surroundings. A LiDAR-equipped
mobile robot has been developed to navigate inside a room without any
impact on the wall (Hutabarat et al. 2019).

3.5.4 ADVANTAGES OF LIDAR SeNsoORrR

The LiDAR sensor offers many advantages, among which the most relevant in robot-
ics are as follows:

i. Provision of fast and accurate target detection and ranging with an accu-
racy of 0.15-0.25m is assured. During its continuous movement, a 2D
LiDAR-mounted cleaning robot identifies if a person is lying on the
ground after falling. A convolutional long short-term memory (LSTM)
neural network is trained for the classification of the processed sensor
information. It can identify if a fall has occurred for monitoring the
activities of elderly people living alone to assure emergency healthcare
(Bouazizi et al. 2023).

ii. Independence of distance measurements from lighting and weather con-
ditions is achieved. Exceptions are heavy rain, cloud cover, fog, and
snowstorms.

3.5.5 Limitations oF LIDAR SeNsor

The LiDAR has shortcomings too, which must always be properly accommodated
when using it by making the requisite allowances:

i. Obscuring of one object by another at LiDAR height inhibits its proper
functioning.
ii. It is difficult to detect transparent objects. Reflective surfaces too create
confusion.
iii. Adverse weather conditions introduce complexities in detection.

3.6 ROBOTIC SONAR SENSOR

SONAR is the short form of Sound Navigation and Ranging, developed in inspiration
from the echolocation abilities of bats and dolphins. A robot uses SONAR to detect
obstacles in its environment, measure distances to objects, and navigate effectively.
The SONAR primarily acts as a sense of touch for the robot. It allows a robot to per-
ceive its surroundings even in low-light or obscured conditions. It is especially useful
for underwater robots. Besides its regular activities, the robot uses SONAR to find
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the distance, direction, and speed of underwater objects. It is used for mapping the
seafloor topography and geological formations, the aquatic environment and marine
life, finding shipwrecks, or identifying potential underwater obstacles/hazards for
navigation. Robots in submarines use it for navigation and the detection of under-
water vessels. The superiority of SONAR over LiDAR in underwater mapping, par-
ticularly in deep and murky water conditions, arises from the fact that sound waves
travel much farther and more effectively through water than light or radio waves.
These properties make it suitable for underwater detection (Kleeman and Kuc 2008).

3.6.1 WOoORkKING PrINcIPLE OF A SONAR SENSOR

It works by sending high-frequency sound waves in all directions and detecting the
sound waves received after reflection from surrounding objects. In a SONAR system,
the transmitter produces an electrical pulse. The pulse feeds a transducer, which
converts the electrical pulse into sound waves. The sound waves propagate in the sur-
rounding regions. During the course of their movement, they come across any object.
On striking the object, they undergo reflection and bounce off. The reflected sound
waves from the object return and hit the transducer, which transforms them into an
electrical signal and sends it to a receiver.

In Figure 3.2a, a ship has a robot fitted with a SONAR. The ultrasound beam from
the emitter of the SONAR propagates through the seawater and strikes the sea bed.
The incident and reflected ultrasound beams are shown. The time difference between
the electrical pulses corresponding to the incident and reflected signals is recorded.
Using the velocity of sound waves in the concerned medium, the distance between
the sensor mounted on the robot and the object is calculated. The SONAR works in
a pulsed mode by periodically transmitting pulses of the 160 kilohertz (kHz) signal
with a waiting time interval between successive transmissions to listen for the echo.
A programmable divider and oscillator are used to transmit a series of closely spaced
tones, called a pseudo-chirp.

3.6.2 PriMARY CoMPONENTS OF SONAR SENsOR

Figure 3.2b shows the internal construction of a SONAR system. The SONAR has a
transmitter-cum-receiver carrying a transducer which acts as an ultrasound emitter
and detector. Other components include a power supply and measurement circuit.
The processing unit calculates the sea depth and shows it on the display unit. The
functions of the different components of SONAR are explained below:

i. Transmitter-Cum Receiver: It acts both as a transmitter and a receiver of
sound waves; hence, it is called a transceiver.

ii. Transducer: This is the core component of a SONAR, which is engaged
in energy conversion from the electrical into mechanical domain during
transmission and mechanical-to-electrical form during reception of sound
waves using piezoelectric or magnetostrictive materials. It is built as an
array of interconnected sensitive elements to improve the signal-to-noise
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FIGURE 3.2 SONAR: (a) application of a SONAR for measuring the depth of sea water by
arobot in a ship, and (b) parts of the SONAR unit.

ratio. When working in transmission mode, it is referred to as a projector; in
receiver mode, it is known as a hydrophone (Benjamin 2008).

iii. Processing Unit: It analyzes the transmitted and received signals, measures
the time taken by the echo signal to return, and calculates the distance of the
object from the robot.

iv. Display Unit: It provides a visual representation of the processed informa-
tion in numerical form or through graphics, facilitating the planning of a
robot’s course of action.
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3.6.3 ArrLicaTIONS OF SONAR SeNsor IN RoBorTics

The SONAR sensor finds widespread usage in robotics. Its application areas are as
follows:

i. Obstacle Detection to Avert Collisions: A robot detects objects in its path to
prevent colliding against them.
ii. Blind Spot Detection: SONAR comes to rescue in places where the robot’s
primary vision system is obstructed.
iii. Room Navigation: SONAR acts as a cost-effective room navigation tool,
cheaper than LiDAR for a mobile robot in an enclosed space.
iv. Mapping and Localization: The robot sketches a map of its surroundings by
classifying landmarks and pinpointing its own location within the map.
v. Underwater Robotic Activities: SONAR excels in underwater performance
to overcome the limitations of LiDAR for low-visibility light-scattering
afflicted jobs to be executed by a robot.

3.6.4 Limitations oF SONAR SENsOR

Due attention must be paid to the limitations of SONAR when using it in robotics to
avoid errors:

i. Range of Detection Restriction: A smaller range than LiDAR in open air
makes SONAR unsuitable for long-distance navigation of robots.

ii. Lower Accuracy of Detection: Environmental noise and surface texture of
the object impact SONAR output, affecting the robot’s actions. The LiDAR
furnishes a higher 3D resolution in data for clear environments than SONAR.

iii. Angular Dependence of Measurements: The angle of incidence of sound
waves on the object influences SONAR readings, thereby degrading the
robot’s performance.

3.7 ROBOT’S ACCELEROMETER

It is a device that measures acceleration, or the rate of change in velocity of the robot
with respect to time (Liu and Pang 1999). It also measures a robot’s tilt. For a robot
moving on an inclined surface, e.g., during its uphill or downhill motions, the mea-
sured speed includes components due to gravity. These gravity components are not
part of the actual robot speed. So, the computed speed is not the actual robot speed
and the gravity components are compensated in the speed computations to ascertain
the actual speed of the robot (Nistler and Selekwa 2011).

The accelerometer helps the robot to determine whether it is moving or stopped
and to detect collisions or vibrations. It monitors the robot’s physical movement and
maintains its balance from observed changes in speed and orientation. It can perform
gait analysis by measuring the motion of the robot’s limbs or transient events.

Several types of accelerometers are fabricated using micro-electro-mechani-
cal systems (MEMS) technology, e.g., piezoresistive, capacitive, and piezoelectric
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MEMS accelerometers. They generally contain a small mass connected to a stiff
spring. When the mass is accelerated, the spring is deflected. The accelerometer
measures this deflection electrically.

Figure 3.3 shows the three types of accelerometers. In a piezoresistive accelerom-
eter, as shown in Figure 3.3a, the values of piezoresistors located on flexure beams

FIGURE 3.3 Robot’s accelerometers: (a) piezoresistive, (b) capacitive, and (c) piezoelectric.
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connected between the proof mass and a supporting frame change in response to the
bending of the beams caused by acceleration. The change in resistance measures the
acceleration. In the capacitive accelerometer shown in Figure 3.3b, a proof mass is
suspended from anchors. It has electrodes projecting outward on both sides. These
electrodes move in the gaps between electrodes projecting from fixed plates. The
two sets of electrodes constitute an interdigitated pair of electrodes laid out in a vari-
able capacitor configuration. In a piezoelectric accelerometer shown in Figure 3.3c,
a piezoelectric crystal is mounted on the vibrating surface with electrodes on its two
opposite sides. Over the crystal lies the seismic mass, which is held in its place with
a spring. A damper is also fixed. The complete assembly is housed in a package. A
voltmeter is connected across the electrodes of the crystal.

3.8 ROBOT’S TACTILE SENSOR

A robot’s tactile sensor, also known as a fingertip force sensor, is a device that mea-
sures the physical properties of objects through contact (Yardley and Baker 1986;
Tegin and Wikander 2005). It mimics the human sense of touch by detecting contact
and pressure variations across a surface.

It is used by the robot for tasks like grasping objects with varying shapes and
textures, collision detection, and human-robot interaction. It allows more delicate
manipulation of objects. A tactile sensor system for a robot manipulator is used in
industrial processes, e.g., welding and inspection (Suwanratchatamanee et al. 2010).

The tactile sensor operates on the principle of converting mechanical pressure
exerted on its surface into an electrical signal by utilizing changes in electrical resis-
tance, capacitance, or electric charge produced (Figure 3.4). Accordingly, it is of
three types:

i. Piezoresistive Sensor: Conductive particles are embedded inside an elas-
tomer. The distances between the particles change with pressure due to
deformation of the elastomer, thereby altering the electrical resistance of
the device. This sensor is easily microfabricated at an affordable cost. It has
a good sensitivity and simple readout electronics.

Figure 3.4a shows an elastomer with suspended conductive particles
inside and covered with electrodes on its two sides. When a force is applied
to the sensor, the elastomer is squeezed, and the conductive particles come
closer together, decreasing the resistance.

ii. Capacitive Sensor: Here the capacitance between electrodes varies depend-
ing on the separation or overlap between them caused by applied pressure.
The capacitance changes indicate the pressure variations. Besides pressure,
it measures shear forces and strain.

In Figure 3.4b, we see a fixed bottom electrode on a substrate. Spacers
are fixed on two sides of the substrate and an electrode with a polydimeth-
ylsiloxane (PDMS) film is suspended forming an air gap between the elec-
trodes. When the PDMS film is subjected to a force, it bends along with
the electrode fixed to it. Consequently, the air gap between the electrodes
decreases and hence the capacitance of the device changes.
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FIGURE 3.4 Robot’s tactile sensors: (a) piezoresistive, (b) capacitive, and (c) piezoelectric.

iii. Piezoelectric Sensor: It produces an electric charge and hence a potential
difference that is proportional to the force, pressure, or vibrations applied to
the sensor.

In Figure 3.4c, we see a substrate. There is a lower polyvinylidene fluoride
(PVDF) layer with electrodes on both sides. Over this layer lies a soft film.
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Upon the soft film, there is an upper PVDF layer with electrodes on both
sides. Vibrations are produced in the lower PVDF layer by feeding an AC
signal. These vibrations generate an output voltage across the upper PVDF
layer. This voltage changes on applying a force on the upper PVDF layer.

3.9 ROBOT’S PROXIMITY, POSITION, AND DISTANCE SENSORS

A proximity sensor is used in robotics to detect the presence of nearby objects with-
out making any physical contact with those objects (Tsuji and Kohama 2020; Alagi
et al. 2022). It need not specify the exact distance of the object from the robot. It
is sufficient for the robot to know that an object is close to it without touching the
object. It works on capacitive or inductive principles. Proximity sensors using IR
radiation and ultrasonic waves are also common. The robot uses proximity sensors to
avoid obstacles on its path. A robot in a factory uses it to detect whether a workpiece
on a conveyor belt is near it. The proximity sensor shown in Figure 3.5a consists of
an LED and a photodiode along with the readout circuit. An IR beam emitted by the
LED is reflected toward the photodiode. Incident and reflected IR beams are shown.
The readout circuit discovers the presence of the obstacle.

The position sensor gives information to the robot about its current location. It
also measures the angles of joints of the robot’s limbs with respect to a reference
point. The position sensor helps the robot in controlling its motion or monitoring the
positions of its joints.

Linear or rotary encoders or potentiometers are commonly used for position sens-
ing. Figure 3.5b shows a linear potentiometer used for this purpose. A slider moves
over a resistor connected to a battery and a voltmeter. The opposite end of the slider
moves over a fixed plate. As the slider moves between the end points A and B, the
output voltage varies because the path length traversed by the current changes.

A distance sensor accurately measures the distance of the robot from an object.
Time-of-flight cameras and ultrasonic sensors are usually used for distance estima-
tion. Laser range finders, too, are common.

Figure 3.5c¢ shows a piezoelectric ultrasonic transducer acting as a transmit-
ter-cum-receiver. The obstacle, incident, and echo ultrasonic waves are shown. The
control circuit measures the time taken by ultrasonic waves to reach the obstacle and
bounce back, and calculates the distance from the transducer to the obstacle.

The distance sensor is used by the robot for mapping its environment. It guides the
robot’s hands during the manipulation of an object. It also tells the robot about any
object detected on its path.

3.10 ROBOT’S TEMPERATURE SENSOR

A robot uses temperature sensors for performing various everyday jobs:

i. Environmental Monitoring: The robot monitors the temperature of its surround-
ings. Temperature monitoring allows it to adapt to changing environments.
ii. Overheating Detection: The robot detects potential overheating in its com-
ponents. Thus, its motors or batteries are prevented from damage.
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FIGURE 3.5 Sensors for proximity, position, and distance estimation by a robot: (a) prox-
imity, (b) position, and (c) distance.



Robotic Sensing and Actuation Techniques 57

iii. Task Optimization: The robot adjusts its behavior based on temperature
conditions, like slowing down in extreme heat.

Common temperature sensors used by robots include:

i. thermistors which exhibit large resistance changes with temperature,

ii. resistance temperature detectors (RTDs) where the resistance of a high-
purity conducting metal, like platinum, changes with temperature, and
sometimes

iii. IR sensors for non-contact temperature measurement which operate by
measuring the heat of an object by converting the IR radiation emitted by it
into an electrical signal.

The core principle is that the sensor translates the temperature change into an elec-
trical signal in direct response to temperature fluctuations. This signal is read and
interpreted by the robot’s control system.

Figure 3.6 shows a thermistor. In Figure 3.6a, a semiconducting film is sand-
wiched between two electrodes with connection pins. In Figure 3.6b, the semicon-
ducting film and electrodes are covered with an encapsulating coating.

A type of robot finger capable of precise temperature measurements from 303 to
353 K consists of a flexible reduced graphene oxide-based temperature sensor, an
integrated circuit and a Bluetooth for wireless transmission of data (Zhou et al. 2019).

FIGURE 3.6 Robot’s thermistor: (a) without and (b) with encapsulation.
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3.1

A robot measures humidity to monitor environmental conditions. Humidity control
is crucial for cleaning robots, agricultural robots, or robots operating in sensitive
environments (Lee et al. 2007; Mariani et al. 2023). Different versions of humidity

Al Robotics

ROBOT’S HUMIDITY SENSOR

sensors include the following:

L

ii.

Capacitive Humidity Sensor: Robots typically measure humidity using
a capacitive humidity sensor (Figure 3.7a). The capacitive sensor detects
changes in capacitance caused by moisture in the air. When moisture from
the air condenses on the sensor’s dielectric material, it alters the electrical
properties of the dielectric material between the two electrodes, and hence the
capacitance between the electrodes. This change of capacitance is measured
and translated into a digital signal representing the humidity level. Capacitive
sensors are renowned for their high accuracy and rapid response time. These
characteristics make them suitable for precise humidity measurements.

The capacitive humidity sensor shown in Figure 3.7a consists of a ceramic
substrate over which an oxide or polymer dielectric film is sandwiched
between a bottom electrode and a thin top moisture-permeable electrode.
Resistive Humidity Sensor: This sensor uses a material whose electrical
resistance changes based on the moisture content. But it is generally less
accurate than a capacitive sensor. The resistive humidity sensor shown in

FIGURE 3.7 Robot’s humidity sensors: (a) capacitive, (b) resistive, and (c) piezoelectric.
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1ii.

Figure 3.7b consists of a ceramic substrate covered with a pair of interdigi-
tated electrodes over which a hygroscopic film is deposited.

Piezoelectric Humidity Sensor: It measures the change in mass due to water
vapor adsorption. The sensor works by measuring changes in oscillation
frequency caused by mass bound to the surface of the piezoelectric crystal.
In Figure 3.7c, a quartz crystal with two electrodes has a moisture-sensitive
coating to adsorb moisture from the air. The moisture adsorption causes a
change in mass and hence the oscillation frequency of the crystal with the
humidity level.

3.12 ROBOT’S MICROPHONE

A robot uses microphones for a variety of tasks, including (Tamai et al. 2004;
Lollmann et al. 2017):

i.

ii.

iii.

iv.

Speech Recognition: Robots use microphones to recognize speech. They
are able to do so even against background noise.

Communication: Robots use microphones to communicate with their envi-
ronment, enabling them to react to audio commands.

Sound Source Localization: Robots use microphones to determine the
direction and place from which a sound is coming.

Source Separation: Robots use microphones to separate and identify simul-
taneous sound sources for reacting to complex auditory environments with
reverberation and noise.

. Sound Tracking for Rescue Missions: Robots use microphones to listen to

sound of people who are calling for help, such as those trapped under a
rubble.

Some types of microphones used in robotics are as follows:

i.

ii.

iii.

Dynamic Microphones: These microphones are known for their reliability
and ruggedness. They do not require batteries or external power supplies. In
the dynamic microphone shown in Figure 3.8a, a wire coil is attached to a
diaphragm. The coil moves between the pole pieces of a permanent magnet
marked as N and S. The sound waves impinging on the diaphragm produce
vibrations in it. The vibrations make the coil move back and forth in the
magnetic field between the pole pieces. The movement of the coil induces
a voltage in it. This voltage is recorded as the output voltage signal, serving
as a replica of the sound pressure variations.

Ribbon Microphones: These microphones use a light metal element to pick
up both the velocity and displacement of air. This gives them improved
sensitivity to higher frequencies.

Condenser Microphones: These microphones provide more detailed repro-
duction of sound than dynamic microphones, but they require an external
power supply to function. They are very sensitive and pick up sound from
close sources, room sound, and background information.

59
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FIGURE 3.8 Robot’s listening and talking devices: (a) microphone and (b) speaker.

Robot microphones use a variety of techniques to help robots identify and under-
stand sounds in their environment, including:

i. Beamforming Microphones: These use multiple microphones to determine
the direction of a sound source. The direction is determined by measuring
the time it takes for the sound to reach each microphone and the strength of
the received sound signal.

ii. Microphone Arrays: They use a group of omnidirectional microphones.
They are used to separate sounds and reduce noise.

3.13 ROBOT’S SPEAKER

A speaker developed specifically for a speaking or talking robot is custom-designed
and tailored to meet the unique needs of different robot applications. Vital factors
considered are clear audio quality at various volumes, volume control, directionality,
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and sometimes even specific sound characteristics to match the robot’s intended per-
sonality. No less important is the compact size of the speaker to fit within the robot’s
body design. The speaker must also have the ability to operate in harsh environ-
ments, with personalized features like audible warnings in safety-critical situations
or pleasant voice interactions in social robots.

Figure 3.8b shows a moving-coil loudspeaker. A moving coil connected to the
input voltage signal is mounted between the pole pieces N and S of a permanent
magnet. The current flowing through the coil produces a magnetic field around it.
The magnetic field of the coil interacts with the magnetic field of the permanent mag-
net. The interaction of magnetic fields induces vibrations in the diaphragm and cone
attached to it and supported by suspensions from a chassis. The vibrating diaphragm
produces sound waves that are transmitted through the air.

Many robot developers create unique speakers to optimize sound quality and fit
within the robot’s physical constraints. Different robot applications might require
different speaker characteristics, like high-fidelity sound for social robots or loud,
clear warnings for industrial robots. Depending on the robot’s design, some may
utilize commercially available speakers adapted for robotic use, depending on the
application and desired functionality. Others may require completely custom speaker
systems to achieve desired functionalities. Speakers are often integrated into the
robot’s design, sometimes even within the mouth area to enhance realism.

Social robots use artificial intelligence algorithms to identify the speaker and per-
sonalize the conversation. They are programmed to deliver a speech while mimick-
ing a human speaker’s gestures and body movements.

Design considerations for robotic speakers are as follows:

i. Size and Shape: It must fit within the robot’s form factor. Compatibility with

robot’s design and aesthetic appeal cannot be overlooked.

ii. Durability: Depending on the robot’s environment, it must withstand vibra-
tions, temperature fluctuations, and potential impacts.

iii. Sound Quality: Clear and audible voice reproduction is crucial for commu-
nication and interaction.

iv. Directional Sound: Some robots require speakers that can project sound in
specific directions for targeted communication.

The applications of robotic speakers are as follows:

i. Human-Robot Interaction: Social robots often use speakers for natural con-
versation and providing feedback.
ii. Industrial Automation: Industrial robots alert workers to potential hazards
or provide status updates on machinery.
iii. Navigation Assistance: Assistive robots guide users with voice commands.

Examples of specialized robotic speaker features are as follows:

1. Multiple Speaker Arrays: These are used to create a more immersive sound
experience or direct sound toward specific locations.
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ii. Adaptive Volume Control: It automatically adjusts volume based on ambi-
ent noise levels.

iii. Audio Processing Algorithms: They enhance speech clarity and reduce
background noise.

3.14 ROBOT'’S TEXT-TO-SPEECH (TTS) SYNTHESIZER

It is a speaking device used by a robot. It converts written text into audible speech,
allowing the robot to speak by playing back the generated audio through a speaker.
It takes input in the form of text and produces an audible voice output. It has the fol-
lowing components:

i. Microphone: It captures spoken words from a user.

ii. Speech Recognition Algorithm: It converts spoken words into digital data.
iii. Text-to-Speech Engine: It converts text into spoken audio.
iv. Speaker: It plays the generated audio.

It is worth noting that the TTS is combined with a microphone for speech recogni-
tion. This enables the robot to understand spoken commands as well.

3.15 ROBOT’S ACTUATION MOTORS

Electric motors are the principal components of mobile robots engaged in transporta-
tion, manufacturing, and surveillance industries (Coiffet and Chirouze 1983). They
are used for the movement of these robots from place to place. They power their
wheels, legs, or other locomotion parts through the conversion of electrical energy
into mechanical motion. A wide variety of motors of different types, each with spe-
cific capabilities suited to specialized actions, are available. The robot design engi-
neer can choose the most befitting one from this variety for any application (Yuan
2023; Tiwari 2025).

3.15.1 MorToR SeLecTION CRITERIA FOR ROBOTICS

Essential considerations for choosing a proper robot motor are as follows:

i. Continuous and maximum torque needed for handling the load without
overheating or stalling of the motor.

ii. Desired range of motor speed and requisite precision in speed control.

iii. Efficiency of the motor to save power consumption and prolong battery life.
iv. Physical dimensions and weight of the motor to fit within the robot’s
body.

v. Motor sealing and protection for protection from environmental hazards in
robot’s workplace, e.g., dust, extreme temperatures, humidity, and exposure
to chemicals.

vi. Reliable and maintenance-free operation of the motor, e.g., brushless motors
are more robust with longer life spans and less frequent breakdowns.
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Complexity of motor control circuitry, e.g., stepper motors require intricate
control algorithms, whereas the DC motors are easily controllable.
Compatibility with control electronics module of the robot for seamless
integration with the microcontroller.

Easy scalability, upgradation, and acceptability of additional features.

. The available budget and economical aspects of the customer.

3.15.2 Tyres oF MoTtors Useb IN RoBorTics

The common types of robot motors are as follows:

i.

ii.

DC Motors: These simple, affordable motors are easy to install and main-
tain. They are used in battery-operated applications. They provide continu-
ous rotation with a high torque-to-inertia ratio. They respond quickly to
control signals with precise speed and position control. However, they are
prone to wear and tear due to the use of brushes. Moreover, they have lower
efficiency than brushless motors.

Figure 3.9a shows a brushed DC motor. The rotor is the armature coil
whose terminals are connected to the split-ring commutator. A battery con-
tacts the split-ring commutator through carbon brushes to deliver the cur-
rent to the rotor. The commutator reverses the direction of the current in
every half cycle. Hence, the coil continues to rotate in the same direction.
Brushless DC (BLDC) Motor: Brushless motors show improved per-
formance and longer lifespans compared to traditional DC motors. This
is possible because the need for brushes is eliminated. These motors are

FIGURE 3.9 DC motors for robot actuation: (a) brushed and (b) brushless.
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commonly used in mobile robots that require high efficiency. Undoubtedly,
they offer quiet operation due to the absence of brushes and also require low
maintenance. However, they have more complex control and drive circuitry.
Also, their initial costs are higher compared to brushed DC motors.

Figure 3.9b shows a BLDC motor. The rotor is a permanent magnet
marked N-S. The stator consists of three separate coils. Three-coil stator
configuration generates a rotating magnetic field by selectively energizing
two of the three stator coils at a time. This field causes a smooth, controlled
motion of the rotor without brushes.

iii. Servo Motors: A type of DC motor, they offer high precision and control.
They are commonly used in robotic arms and autonomous vehicles. They
allow for accurate positioning. They are capable of holding a specific
angle even under load. But they offer a limited continuous rotation than
other motors. Also, they have a relatively higher cost than standard DC
motors.

iv. Stepper Motors: They are brushless DC motors that can move in precise
increments. Hence, they are used in applications that require accurate posi-
tioning or smooth motion control, such as robotic arm movement and 3D
printing. They operate by dividing a full rotation into a series of steps, giv-
ing precise control and high torque output. But they have a higher power
consumption when holding a position. Also, they experience resonance
issues at certain speeds.

v. AC Motor: The AC motors are used in large robotic arms and manipulators.
They are used in industrial automation equipment requiring high power out-
puts. They are robust and capable of delivering high torque. But they have
more complex control than DC motors. Further, they require an external
power inverter for variable speed control.

Figure 3.10a shows a synchronous motor. The rotor consists of perma-
nent magnets. Three-phase AC supplied to the stator windings generates a

FIGURE 3.10 Three-phase AC motors for robotic actuation: (a) synchronous and (b)
induction.
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rotating magnetic field. The rotating field induces an electric current in the
rotor, accompanied by a magnetic field. The interaction between the mag-
netic fields of the stator and the rotor creates a torque. The torque enables
the rotor to lock with the stator’s magnetic field and rotate at a synchronous
speed.

Figure 3.10b shows an induction motor. A three-phase AC is supplied
to the stator, creating a rotating magnetic field. The rotating magnetic field
cuts the rotor’s conductors, inducing an electromotive force and hence cur-
rent in the rotor. The current induced in the rotor interacts with the rotating
magnetic field. The resultant torque causes rotation of the rotor.

Linear Motors: These motors are used in high-speed and high-precision
robotic systems. Such robotic systems are used in semiconductor manufac-
turing equipment. They provide direct linear force, eliminating the need for
additional mechanical components such as gears or pulleys. This advan-
tage makes them suitable for applications requiring linear motion instead of
rotational motion. They have higher costs than traditional rotational motors
but are limited to specific linear motion applications.

Pneumatic Vane Motors: They use compressed air to generate rotational
motion. Being lightweight and able to deliver high power-to-weight ratios,
they are used in mobile robots. These robots require quick movements.
They are also preferred in environments where electric motors may not be
suitable, e.g., in explosive atmospheres. They require a reliable source of
compressed air.

Hydraulic Motors: They use pressurized fluid to generate rotational motion.
They deliver high torque and are commonly used in heavy-duty applications
that require significant power output, e.g., in large mobile robots, such as
construction or agricultural machinery. They require a hydraulic fluid sup-
ply and associated plumbing. They demand higher maintenance owing to
the potential for fluid leaks.

Figure 3.11 shows a pneumatic/hydraulic motor. The rotating element is

a slotted rotor mounted on a drive shaft. Each slot of the rotor is fitted with
a freely sliding vane extended to the casing wall using springs. Compressed
air or liquid is pumped through the gas/liquid inlet. It pushes the vanes
to move ahead, creating the rotational motion of the central shaft. Then it
comes out through the gas/liquid outlet.
Piezoelectric Motors: They are based on the piezoelectric effect of deforma-
tion of a material when subjected to an electric field. They are commonly
used in micro-robotics or applications that require precise movements and
fine adjustments. They are limited to low power output applications and
operate on a small scale. They are more complex to control than traditional
motors.

Figure 3.12 illustrates the working of piezoelectric motor. Figure 3.12a
shows the motor consisting of a piezo stack fixed on one side, a contact
point, a slider, and a bearing. No voltage is applied.

In Figure 3.12b, a voltage slowly increasing with time is applied. The
piezo stack is slowly extended. The slider moves along with the moving
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FIGURE 3.11 A pneumatic/hydraulic motor for robotics.

contact point owing to the frictional force between the contact point and the
slider. This is the stick-phase.

In Figure 3.12c, a voltage rapidly decreasing with time is applied. The
piezo stack is rapidly retracted. The slider remains stationary due to inertia,
but the contact point slips back to its original position. This is called the
slip-phase. A net displacement of the slider results.

A macroscopic movement is realized by repetition of the steps of
Figure 3.12b and c.

x. Magnetic Field Motors: These motors use the principles of magnetism to
generate motion, like magnetic linear actuators. They offer high precision,
so they are used in mobile robots that require accurate position control,
such as medical robotics or laboratory automation. They need complex con-
trol algorithms for optimal performance, and they are more expensive than
other motor types.

3.16 DISCUSSION AND CONCLUSIONS

Sensors and actuators are essential components of robots that make them capable of
environmental perception, physical action, and communication with other devices
(Table 3.2). Electronic control systems consist of computational processors, storage
devices, interfacing circuits, notably OP-AMPs and analog-to-digital converters,
and open-loop and closed-loop control systems. To name a few components/circuits,
Arduino is a small computer serving as the robot’s brain that can be programmed
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FIGURE 3.12 A piezoelectric motor for a robot in three different states: (a) without any
applied voltage, (b) on applying a voltage slowly increasing with time, and (c) on applying a
voltage rapidly decreasing with time.
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TABLE 3.2

Reflecting Back on This Chapter and the Lessons Learned

SI. No. Lessons Learned Explanation

1 Summary Sensing and perception by robots enable them to see, hear, and

feel their surroundings in order to interact with their
environment. Actuators and end-effectors of robots power their
movements and actions.

2 Robot cameras Considerations for robot camera mounting were described
together with their typical mounting configurations and
applications. Different types of robot cameras were mentioned.

3 LiDAR and SONAR The principle of operation, primary components, applications,
advantages, and limitations of robotic LIDAR and SONAR
sensors were elaborated.

4 Robot’s sensors Robots are equipped with various sensors, among which
accelerometers, tactile sensors, proximity sensors, position
sensors, distance sensors, temperature sensors, and humidity
sensors are most commonly used in a typical robot.

5 Speaking/listening aids The robot also has a microphone, speaker, and text-to-speech
synthesizer for easy interaction with humans.

6 Robot’s actuators Several types of actuation motors used in robotics were
discussed and their selection criteria were outlined. Among
these, the DC motors, brushless DC motors, servo and stepper
motors, AC motors, linear motors, pneumatic vane/hydraulic
motors, piezoelectric and magnetic field motors are prominent.

7 Keywords and ideas to Sensing and perception, actuators and end-effectors, robot

remember cameras, LiDAR sensor, SONAR sensor, accelerometer, tactile
sensor, proximity, position, distance, temperature, and humidity
sensors, microphone, speaker, and actuation motors.

for controlling its lights and motors; RasberryPi is a versatile kit featuring system on
chip with GPU, RAM, and connectivity; and Robot Operating System (ROS) is an
open-source framework to assist researchers in building and using codes between
different robotic applications.

After familiarizing ourselves with the different kinds of sensors and actuators
used for building robots, let us examine how these devices impart capabilities to
robots similar to humans about sensing and interacting with their environments.
As we know, human—human interaction is largely based on speaking to/listening to
others, and acting in response. It is the natural and prevalent way by which people
communicate and exchange information among themselves. Through speech, we
convey our thoughts, ideas, and emotions to our colleagues and friends. Conversation
by speech fosters social bonding and connections. We would surely like to inter-
act with robots via speech. Speech is a convenient, fast, and efficient communica-
tion mode with robots for controlling robots in industries, such as surgical robotic
arms. Speech-supported robots can take care of the sick and help people in dan-
gerous environments more easily than deaf and dumb robots. Sinch speech enables
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more motivating and satisfying robot—human interactions; we shall look into the
techniques of speech processing for robotics in the forthcoming chapter. Speech
processing becomes more complicated in noisy environments and those prone to
reverberations.
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Talking and Listening
Robots

Speech Synthesis,
Recognition, and
Understanding

4.1 INTRODUCTION

Robots speak, listen, and act using a combination of hardware and software technolo-
gies. These technologies enable them to generate human-like speech and commu-
nication for robot-to-robot and robot-to-human interaction. The main technologies
involved in these interactions are as follows:

i. Text-to-speech (TTS) synthesis (Kuo and Tsai 2024)

ii. Speech recognition (Zinchenko et al. 2017)
iii. Natural language processing (NLP) (Supriyono et al. 2024)
iv. Speakers, microphones, and actuators

Table 4.1 presents a comparative description of the fields of speech synthesis and
recognition.

This chapter discusses the technologies used in natural language-controlled
robots, i.e., robots that speak and understand like humans, enabling the exchange of
information by robots’ mouths and ears.

4.2 TTS SYNTHESIS AND VOICE GENERATION

TTS synthesis is referred to as speech synthesis. It is also called voice generation. It
is an artificial intelligence technique based on machine learning models. It works by
applying linguistic rules and pronunciation dictionaries to convert written text into
spoken words. These words sound natural and human-like (Rashad et al. 2010; Li
and Lai 2022).

4.2.1 PHases oF TTS

TTS is a three-phase process. The three phases in TTS are text normalization,
prosodic analysis, and concatenating speech synthesis (CSS) (Nair et al. 2022;
Ahmad and Rashid 2024). Explanatory details are given below:
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TABLE 4.1
Speech Synthesis and Speech Recognition
Point
SI. No. of Comparison Speech Synthesis Speech Recognition
1 Definition It is the process of converting It is the opposite of speech
written text into spoken language, synthesis, converting spoken
thereby creating artificial speech language into written text.
from text.
2 Fast definition It speaks what we type. It ‘types’ what we say.
3 Function It is used to generate human-like It is used to understand
spoken language from written text. spoken words and translate
them into the written format.
3 Input/output It takes text as input and produces It takes an audio signal as
an audio signal as output. input and produces text as
output.
4 Examples A text-to-speech program reading a A voice assistant listening to
document audibly and distinctly to our voice commands and
the audience. interpreting them as text.

i. Text Normalization: Text is the raw written input material. It is the material

that needs to be converted into synthetic speech. Text normalization means
the conversion of text into a consistent, canonical form before processing.
By the canonical, normal, or standard form of a mathematical object is
meant a form which presents the simplest representation of the object and
allows it to be identified in a unique manner.

Figure 4.1 illustrates the step-by-step procedures and defines the tech-
nical terms used in text normalization. The procedures are feeding the
input raw text, case conversion, tokenization, removing punctuation marks
and stop words, parts-of-speech tagging, and stemming/lemmatization to
reduce words to their root forms.

All text is uniformly converted to either lowercase or uppercase.
Spellings of words are checked for correctness. Extra characters or punc-
tuation marks are deleted. The stop words like ‘the’, ‘a’, ‘an’, etc. are also
obliterated. Words are reduced to their base forms, e.g., ‘walking’ to ‘walk’.
The given piece of text is split into smaller units called tokens. These tokens
are words, characters, or numbers, and the splitting process of the text is
known as tokenization. The text is converted into a standard computer for-
mat to a target specification. The string of phones to be synthesized together
is included.

In phonetics, a phone is a distinct, discriminable speech sound. It is not
specific to a language. The sounds [p"] and [p] are two separate phones.
There are four phones: [s], [p], [1], and [n] in the word ‘spin’.

A phoneme is the smallest unit of sound that carries a definite mean-
ing in a language. It is a speech sound that can change the meaning of the
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FIGURE 4.1 Depiction of the stages through which a supplied text is passed during
normalization.

ii.

word. A new word is produced when a phoneme is swapped with another
phoneme. To illustrate, substitution of the phoneme /p/ in the word ‘peg’
with the phoneme /1/ generates the word ‘leg’. Similarly, the words ‘kid” and
‘kit’ terminate with two different phonemes, /d/ and /t/.

The phoneme is represented by a written letter or a group of letters
known as a grapheme. Different variations of the same phoneme occur in
dissimilar contexts. But they do not change the meaning of a word. These
variants are known as allophones. To clarify, the letter ‘t’ is a grapheme;
the sound of the letter ‘t’, e.g., in ‘top’, is a phoneme. However, the slightly
dissimilar ’t’ sounds in ‘top’ and ‘stop’ are allophones.

The progress of phonetic conversion takes place in the order graph-

eme-phoneme-allophone. Figure 4.2 illustrates the stages in phonetic con-
version: grapheme-to-phoneme conversion, phonetic feature analysis, and
phoneme-to-allophone conversion.
Prosodic Analysis: Prosody is a reflection of the nuanced emotional charac-
teristics of the speaker. Prosodic analysis involves analyzing a text’s thythm
and emphasis patterns to identify elements such as stress patterns, pitch
variations or intonation, and pauses. These elements are crucial for con-
veying meaning and emotion to speech in order to create natural-sound-
ing speech (Totsuka et al. 2014; Corrales-Astorgano et al. 2024). Prosodic
patterns vary with languages and dialects. So, they need careful attention.
Prosody influences the utterance segmentation into syllables and words
(Dahan 2015).

Figure 4.3 shows the nine steps in prosodic analysis: input as a recorded
audio signal of spoken language, transcription of a speech sample, identifi-
cation of syllables, marking stress levels, analysis of pitch contour, pauses
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FIGURE 4.2 The three stages constituting a phonetic conversion.

and junctures, interpretation and contextualization beyond literal words,
and output as a detailed breakdown of the pitch contour, intensity, and dura-
tion of speech segments.

iii. Concatenation Speech Synthesis: Itis also called unit selection speech synthe-
sis. It means joining together textual forms of pre-recorded speech-segment
waveforms to form a complete utterance. The linking is done by accessing a
large library of pre-recorded speech sounds like phonemes or syllables. The
appropriate units for each phone segment are selected based on the text anal-
ysis. This is done in such a manner that the output speech matches the input
text with high naturalness of the sound. Then the units are joined together
to produce the final spoken output. Post-processing is performed to smooth
potential discontinuities for removing concatenation artifacts (Rabiner and
Schafer 2007; Oralbekova et al. 2024). Figure 4.4 shows the details of the
concatenation of short samples of input text to produce a synthesized speech
output. The six steps involved include: feeding the input text, text analysis,
searching, matching, concatenation, and post-processing.

Concatenation is essentially stitching together pieces of audio. Its purpose is
to create free-flowing speech. Naturalness is an essential ingredient for TTS. The
speech looks natural because it uses real human speech segments. The real segments
are able to capture subtle variations in pronunciation and intonation. But concatena-
tion needs an extensive library of recorded speech to cover all possible combinations
of sounds and variations. Such a vast, all-embracing library is extremely difficult
to compile. Further, the process of joining together different speech segments can
sometimes create noticeable gaps or unnatural transitions. Therefore, the quality of
the database and the joining algorithm play significant roles in concatenation.
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FIGURE 4.3 The progression of a prosodic analysis of speech.
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FIGURE 4.4 Combining the input text representing pre-recorded speech segments to create
a synthetic voice.

4.2.2 Cost FuNcTIONS AND THEIR OPTIMIZATION

Two cost functions, namely, target cost C'(u,,t)) and concatenation cost C(u;_,u;) are
minimized for unit selection:

i. Target Cost: This cost function signifies the desired cost of a single acoustic
unit, e.g., a phoneme, which is necessary to attain a specific quality level,
as determined by the acoustic properties of the unit such as pitch, duration,
and energy. It is determined by considering factors such as quality, clarity,
and overall prosody expected from speech.

The primary use of the target cost is in selecting the best unit from a
database during speech synthesis. The selection is done on the basis of its
matching with the target pronunciation. Hence, its value expresses the mis-
match between the target speech unit specification ¢, and a candidate unit u;
from the database.

ii. Concatenation Cost: This cost function is representative of the additional
cost sustained when two acoustic units are connected together. It mea-
sures how evenly one sound transitions to the successive sound. Its atten-
tion is concentrated on the potential discontinuity or unnaturalness of
sound. Factors taken into account are the transition between phonemes,
pitch changes, and spectral uniformity between adjoining units aspiring to
produce natural-sounding connected speech. Therefore, it is used to select
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units that seamlessly join with the previous unit. Seamless joining of units
contributes to a smoother, more natural-sounding speech. The value of the
concatenation cost expresses the acoustic or perceptual mismatch of the
joint between the candidate unit u; and the preceding unit u;_,.

Cost Function Optimization Procedure: When synthesizing speech, a sys-
tem first selects the acoustic unit with the nearest target cost to the desired
pronunciation. Then it has to decide which unit to place next to ensure a
smooth transition. So, it considers the concatenation cost. Thus, the target
and concatenation cost functions are jointly optimized to enable the speech
synthesis system to produce high-quality speech with natural-sounding
connected speech. Ideally, all the target units should be found according to
the specification. Ushering of acoustic mismatches at the edges of concat-
enated units should be prevented (Hunt and Black 1996; Gupta 2008).

4.2.3 Use ofF TTS By RoBoTs

Robots exploit TTS synthesis technology to convey information fluently. Speech
enables audible messaging to users. Robots use TTS as an assistive technology for
reading text aloud. Narrations are created for movies and screen captures for peo-
ple who prefer to listen to reading. Championing oratorial variety, these systems
often support numerous languages. These features make them useful across varied
environments.

4.3 SPEECH RECOGNITION AND UNDERSTANDING

Robotic speech recognition and language understanding is an umbrella technology
dealing with the ability of a robot to listen to human speech, interpret its underly-
ing meaning within context, and respond properly. It essentially allows the robot to
understand natural language commands and instructions, facilitating natural, intui-
tive, and seamless interaction between human operators and robots through spoken
language. Speech recognition must be clearly differentiated from voice recognition,
as explained in Table 4.2.

Various technologies used in speech and language understanding include speech
recognition (conversion of spoken words into digital text using algorithms), NLP
(analysis of the recognized text to comprehend its meaning), context awareness
(interpretation of speech with respect to the surroundings/situations), semantic pars-
ing (breaking down a sentence into its core meaning for triggering the intended
action), and dialogue management (maintaining a conversation flow by tracking the
conversational context).

4.3.1 SpeecH RECOGNITION

Speech recognition is sometimes called automatic speech recognition (ASR).
Another name used is computer speech recognition. Speech recognition is essentially
speech-to-text conversion. It necessitates the execution of commands for spoken
words using sophisticated machine learning algorithms. These algorithms process
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TABLE 4.2
Speech Recognition vs Voice Recognition

SI. No.  Point of Comparison Speech Recognition Voice Recognition

1 Definition It is the process of It is the process of identifying a
understanding spoken words. speaker.

2 Purpose It performs a transcription of It aims at the identification of a
spoken words into text. speaker based on the voice

characteristics in the supplied
signal.

3 Principle It uses Al to analyze an audio It uses Al to analyze vocal
signal and identify words, biometrics, such as pitch, tone,
phrases, or language patterns and rhythm, in a given audio
in the signal. signal.

4 Applications Transcription services, virtual Security purposes like

assistants, voice search, unlocking, voice assistants,

accessibility, creation of executing voice commands,
computer-generated captions etc.
that capture dialogue in

multimedia content, etc.

and understand human speech in real time. They are able to function correctly irre-
spective of variations in accents, slang, pitch, speed, etc. (Chen et al. 2024; Goetzee
et al. 2024).

The recognized language or command is utilized for transcription. It is sometimes
used to operate a device. Instructions are frequently given to a virtual assistant.

4.3.1.1

Figure 4.5 shows the process of transforming the spoken words from a person’s voice
into easily understood text in written form. It comprises the stages of capturing the
audio signal, preprocessing it, generating a Mel-scale spectrogram, post-processing,
model processing, feature extraction, and output. They are implemented as follows:

Human Speech to Readable Written Text Conversion

i. A microphone picks up and records speech samples. The recorded signal is
as an analog audio signal.

ii. The raw analog signal shows amplitude of sound wave in decibels with
respect to time. It is preprocessed, by amplification, noise reduction, etc.
iii. The next step is analog-to-digital conversion. During analog-to-digital con-

version, the sound wave is divided into 1s-wide segments.

iv. The Fast Fourier Transform (FFT) algorithm is applied to the digitized data.
It converts the signal into a spectrogram, which is a plot of frequency on the
Y-axis and time on the X-axis.

v. The spectrogram is matched to the phonemes. As already said, a phoneme
is a distinct unit of sound in a given language. The speakers of a language
perceptually regard it as a single basic sound, e.g., there are ~40 phonemes
in the English language.
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FIGURE 4.5 Recognizing words spoken by a person, and converting them into textual
format.

vi. There are variations in speaking phonemes called allophones. These varia-
tions arise owing to differences in the gender, age, accent, and emotional
state of the speaker. Nonetheless, the phonemes constitute the basic building
blocks used by a speech recognition algorithm, such as the hidden Markov
model and deep neural networks (DNNs). These algorithms arrange them in
the correct order to form meaningful words and sentences.

A speech recognition system aims to find the most likely sentence that
was uttered by a user given the speech input, as expressed by the equation

S = argmax (S € L) {P(f&)}

where ‘argmax’ is the abbreviation of ‘argument of the maxima’, represent-
ing the input value(s) at which the output value of the function is maximized,

@)
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L is the given language, S € L are possible sentences within it, A is the

observed audio input, and P 5 is the S probability of S given A is true
(Jurafsky and Martin 2009).
Applying Bayes’ rule, this equation may be written as

A

S =argmax(S e L) P(S)P(S)

A @2)

where P(;‘) is the probability of occurrence of A given S is true, and P(S)

and P(A) are absolute probabilities of S and A, respectively. The denomina-

tor P(A) is a common factor among all candidate sentences. Hence, it can
be ignored.

vii. Hidden Markov Model: Correct order in phoneme arrangement is main-
tained using statistical probabilities in a three-layered process:

Layer 1: The algorithm examines the acoustic level and the probability
of the phoneme. This is done to confirm that the correct phoneme has been
detected by comparing it with well-known words, phrases, and sentences.

Layer 2: The algorithm scrutinizes the succeeding phonemes. It checks
the probability that they should be following each other.

Layer 3: The algorithm inspects the word level. The objective is to find
that the adjoining words make a sensible meaning. This is done by verifying
the probability that they should be in succession.

A thorough probability analysis is carried out, followed by checking and
re-checking. Then, the most likely text is presented as the output. The algo-
rithm adequately fits the sequential speech content. Hidden Markov models
have been the backbone of speech recognition. This is because they model
speech as a sequence of states. In this sequence, each state represents a
phoneme or a group of phonemes. The hidden Markov models provide a
simple and effective framework for temporal modeling of speech signals as
well as the consecutive phoneme arrangements for building a word. Albeit,
the existence of a wide variety of phonemes and their possible combinations
often renders it difficult to achieve perfection. Further information on hid-
den Markov models is given in Section 9.2.

viii. Deep Neural Networks: The DNNs represent complex connections between
the speech input and the resulting text output through a hierarchy of layers.
They can learn hierarchical representations of data. Thus, learning ability
makes them particularly effective at modeling intricate patterns found in
human speech. They are used for acoustic modeling to better understand
the audio content of speech. They are used for language modeling as well to
predict the likelihood of certain word sequences.

Neural networks can improve over time, offering a great flexibility
advantage. The neural network is trained. All the different connections ini-
tially have the same weight. Necessary input data for training is supplied
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to the neural network. Specification of its accurate output is also made.
The neural network then proposes a certain output. If the output from the
neural network does not agree with the desired output, more training is
needed. This difference between the actual and desired outputs is the error.
The neural network adapts itself with the adjustment of weights to reduce
the error. A neural network requires plenty of input training data to improve
itself for error elimination. The necessity for abundant input data before
becoming perfect is one of the drawbacks of neural networks in speech rec-
ognition. The other pitfall is that it fits the sequential nature of speech badly.

On a positive note, neural networks provide a supple approach. This
approach grasps the varieties of the phonemes, making them capable of
detecting the uniqueness of accents, emotions, age, gender, and so forth.
Therefore, a hybrid strategy combining hidden Markov models with neural
networks is adopted. In this hybrid strategy, each method compensates for
the deficiencies of the partner, thus firming up complementarity.

4.3.1.2 NLP Algorithms

NLP algorithms are mathematical formulae used for training computers in under-
standing natural language (Wang et al. 2023; Khurana et al. 2023). They include the
following:

i. Sentiment Analysis: It is the process of classification of text into positive,
negative, or neutral sentiment categories. It can classify a movie review as
either positive or negative from the language used inside it. It consists of the
following steps:

a. Tokenization: The text is broken down into individual words or tokens
for separate analysis.

b. Removal of Stop Words: The words like ‘is’, ‘an’, and ‘the’ have insignif-
icant meaning. Therefore, they are removed to focus on the main words.

c. Text Normalization: It is also known as stemming or lemmatization.
It converts words into their base or root form, e.g., ‘going’ to ‘go’.

d. Feature Extraction: Key words that will help to determine sentiment are
extracted. Adjectives like decent, evil, splendid, etc. are pulled out.

e. Classification: The sentiment is classified using machine learning
algorithms. Binary classification consists of positive and negative. A
multi-class classification is represented by choosing more than two
classes, e.g., delighted, gloomy, and annoyed, or on a scale (rating from 1
to 10). Sentiment finding becomes difficult whenever irony, sarcasm, or
slang are encountered. Irony is a figure of speech that communicates the
opposite of what is said. Sarcasm is an ironic remark made for mocking
in which the speaker says something different from what the speaker
actually means. Slang is the vocabulary of informal language between
two persons of the same social group who know each other well.

ii. Keyword Extraction: This is the process of extracting relevant keywords or
phrases from a single document. Keyword extraction helps identify topics
or trends.
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iii. Named Entity Recognition (NER): It identifies predefined groups of entities,
such as names of persons, organizations, locations, etc.

iv. Topic Modeling: It aims to discover latent themes or topics across a collec-
tion of documents. It works by analyzing the frequency and co-occurrences
of words across them. By such analysis, it clusters word groups and similar
expressions that best characterize a set of documents.

v. Intent Classification: This process tries to determine the intent behind a
textual message, which can be a customer query, request, or complaint.

vi. Knowledge Graph: It creates a graph network of important entities, such
as people, places, and things. The graph allows easy understanding of the
context and shows how different concepts are related.

vii. Word Cloud: This is a graphical representation of the frequency of words
used in the text. The intent is to gain insights about prominent themes, sen-
timents, or buzzwords around a particular topic. An example is identifying
trends and topics in customer feedback.

viii. Text Summarization: The text summarization algorithm creates summa-
ries of long texts into shorter versions to make it easier for humans to
understand their contents quickly for better analysis. Extractive summa-
rization selects and combines the most important sentences or phrases.
Abstractive summarization produces new sentences that capture the
essence of the original text.

Robots should be able to report in natural language what they have done by providing
concise summaries. They should be able to respond to questions about themselves.
They should be able to learn from the natural language responses they receive to
their summaries (DeChant and Bauer 2022).

4.3.2 UNDERSTANDING THE DEEPER MEANING OF SPEECH

4.3.2.1 Context-Aware Speech Recognition

Context awareness is the ability of a speech recognition system to extricate informa-
tion from the previous utterances of an excerpt, the present circumstances, or domain
knowledge for accurate interpretation of spoken words (Haase and Schonheits 2021;
Chevalier et al. 2022). The system easily understands the likely meaning of a recent
utterance by considering the words spoken previously. Incorporating knowledge spe-
cific to a particular domain can help the system disambiguate words that might be
vague in general language, e.g., physics terminology in an automotive electronics
setting provides a valuable guide in understanding the content. Integrating visual
information aids in interpreting speech more exactly based on the visual scene.

Most speech recognition systems depend on language models. These models pre-
dict the next word based on the preceding words. Advanced techniques consist of
attention mechanisms in neural networks. They allow the system to focus on specific
parts of the input speech based on the prevailing context. A few systems process con-
textual information separately using dedicated context encoders. They later integrate
the processed information with the acoustic features of the speech.



Talking and Listening Robots 83

Context-aware speech recognition is a boon to accuracy improvement. The system
interprets ambiguous words and phrases more competently by utilizing contextual
information. Thereby more explicit transcriptions are enabled. System robustness is
further enhanced by quashing the interfering effects of background noise or accented
speech by appreciating the intent.

Voice assistants are examples of context-aware speech recognition applications.
These assistants use the previous conversation to understand the meaning of a query
faultlessly when a question is asked. Intelligent speakers in smart homes exploit con-
textual information to interpret commands based on the ongoing activities in a room.
A transcription system improves the accuracy of transcribing complex conversations.
It considers the role of the speaker in reference to the complete topic of a discussion.

4.3.2.2 Semantic Parsing in Speech Recognition

It is the process of translating a spoken utterance into an expressly structured,
machine-interpretable representation of its deeper meaning, inclusive of the entities,
actions, and relationships. This is not merely translation into pure text (Erdogan et al.
2005; Corona 2016). Largely, it works by grabbing the key concepts and relationships
within the spoken words. Hence, the computer is enabled to realize the intent behind
a statement. It goes beyond the literal meaning of the words used in it. The parsed
meaning is usually represented in a structured format. This format could be a knowl-
edge graph or a definite command. Therefore, it is directly usable by a computer
program, e.g., a voice assistant needs to catch a customer’s intent to perform actions
like scheduling a reminder or a wake-up call, playing songs, or arranging meetings.
From a statement ‘Set a reminder to wake up at 5 am on Tuesday’, the parser would
extract the action ‘set reminder’, the target ‘wake up at 5 am’, the time ‘5 am’, and
the day ‘Tuesday’.

Semantic parsing uses NLP techniques, such as part-of-speech tagging, entity rec-
ognition, and dependency parsing. It is done after the speech has been transcribed
into text. In semantic analysis, the system plucks out the meaning of the utterance.
The plucked-out meaning is mapped to a formal representation from the linguis-
tic structure and context. Contextual information from previous interactions or the
user’s current situation is incorporated to enhance accuracy.

Ambiguities in natural language originate from words having multiple mean-
ings depending on the context. These ambiguities frequently pose difficulties for a
machine to correctly interpret the intent. Handling of grammatical complexities in
sentence structures and variations in speech patterns introduces complications in the
execution of semantic parsing algorithms.

4.3.2.3 Dialogue Management in Speech Recognition

Dialogue management is the speech recognition component responsible for maintain-
ing the context of a conversation by tracking crucial information, e.g., intent of the
customer, entities mentioned, and the present stage of the dialogue (Passonneau et al.
2012; Reimann et al. 2024). It enables a natural and coherent interaction between
a user and a voice-based system. Usually, in such systems, the recognition process
becomes erroneous in scenarios where multiple user inputs are needed to complete
a task.
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The dialogue management workflow involves:

i. Recognition of Intent: This aims to identify the user’s primary action or goal.
ii. Entity Extraction: Its purpose is recognizing specific pieces of information
within the speech, e.g., names, dates, locations, or quantities.
iii. Dialogue State Tracking: This is done using information already provided
by the user.
iv. Prompting and Clarification: These are done by asking follow-up questions
or requesting additional information when necessary.
v. Error Handling: It is useful in managing situations where the speech recog-
nition system makes mistakes on encountering ambiguous input, allowing
for graceful recovery and re-prompting.

Dialogue management works by:

1. Speech Recognition: Here, the spoken words are converted into text by the
speech recognition engine,

ii. Natural Language Understanding: Here, the text is analyzed to identify the
user’s intent and extract relevant entities,

iii. Dialogue State Update: In this part, the system updates its internal represen-
tation of the conversation based on the recognized intent and entities,

iv. Dialogue Policy: Herein, the system decides what to do next, such as provid-
ing information, asking for clarification, or completing a task based on the
current dialogue state, and

v. Response Generation: In this period, the system generates a response, either
in the form of spoken text or an action, based on the dialogue policy.

Practical dialogue management systems include smart home assistants, e.g.,

1. For implementing the instruction, ‘Adjust the oven at 90°C degrees,’ the sys-
tem needs to understand that ‘oven’ is the equipment, ‘90°C’ is the desired
temperature, and then to update the dialogue state accordingly; and

ii. A virtual customer service agent when asked, “What are office hours?’ the
system will recognize the intent as ‘check office hours’ and provide the
relevant information ‘9 am to 5 pm’.

4.4 DISCUSSION AND CONCLUSIONS

In this chapter, use of speech synthesis and recognition, the two subbranches of
speech processing, was discussed for facilitating human-robot interaction (Table 4.3).
Recent advances in this field were surveyed. Service robots in restaurants and con-
versational robots in healthcare and interviews should be able to respond in natural
language. The responses of these robots should include scientific terminology wher-
ever applicable. Moreover, they should operate in an emotional manner for wide
acceptability by people.
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TABLE 4.3

Ideas and Information Gained from This Chapter

SI. No.  Information Gained Explanation

1 Summary Speech recognition and understanding involve several operations,

such as the conversion of human speech into readable written text,
application of natural language processing algorithms, context
awareness, semantic parsing, and dialogue management, all of
which play vital roles in the process. Salient aspects of speech
technology were elucidated in order to clarify how robots can
communicate effectively with humans through spoken language.

2 TTS synthesis Text-to-speech synthesis and voice generation for robotics were
described in reference to the phases of text normalization, prosodic
analysis, and concatenation of speech segments, as well as the
target and concatenation cost functions.

3 Speech recognition It consists of several operations, such as speech-to-text conversion,
language processing, contextual adaptation and procedures
beyond simple text processing for literal interpretation of speech,
where each step contributes significantly to the overall outcome.

4 Keywords and ideas to  Text-to-speech synthesis, voice generation, cost functions, speech

remember recognition, human speech to readable written text conversion,
natural language processing, context-aware speech recognition,
semantic parsing, dialogue management.

AN ELOQUENT ROBOT

I am a conversational robot
Chattering and gossiping
Questioning and Answering

My actions are never boring

My capabilities to talk and listen
Connect me easily to humans.
Robotic voice communication
Improves human-robot interaction.

Robot speech synthesis uses Al to create human-like speech. After analysis of the
written text, it predicts how it sounds naturally and realistically, and produces a
waveform played by the robot’s speakers.

In speech recognition, a sentence spoken by a human operator is recognized by the
robot using an ASR system (Tada et al. 2020). Then it applies syntactic and seman-
tic parsing to determine the sequence of commands that it is expected to follow.
Practically, the system is susceptible to inevitable errors. Errors also creep in because
of environmental noises and distance of robot microphone from the speaking person.
Recurrent neural networks can apply semantic parsing from sequences of letters and
phonemes. Recognition error-resistant semantic parsers have been developed.
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Following the discussion of robot speech technology in this chapter, let us turn our
attention to making robots capable of seeing by equipping them with vision facili-
ties. A robot lacking in this ability will struggle to avoid obstacles while negotiating
complex spaces. It will not be able to pick up specific items or sort objects to per-
form tasks like assembly or inspection. Of course, a blind robot can navigate using
LiDAR, SONAR or touch sensors but that will make matters more complicated.
So, in the next three chapters we shall be engaged in investigating how robots are
enabled to see their surroundings, as vision is the primary means to perceive the
environment. Nevertheless, it should be borne in mind that robots may be required to
work in in dark areas or in limited visibility conditions such as underground explora-
tion of tunnels or in caves plunged in darkness, or in medical surgery. These robots
rely on non-visual sensors, e.g., surgery is done using tactile sensors to manipulate
delicate tissues.

REFERENCES AND FURTHER READING

Ahmad H. A. and T. A. Rashid. 2024. Planning the development of text-to-speech synthesis
models and datasets with dynamic deep learning, Journal of King Saud University -
Computer and Information Sciences, Vol. 36, 7, p. 102131, pp. 1-18.

Chen J., X. Zhou and Q. Qin. 2024. Research on Speech Recognition of Sanitized Robot
Based on Improved Speech Enhancement Algorithm, 2024 5th International Seminar
on Artificial Intelligence, Networking and Information Technology (AINIT), Nanjing,
China, 29-31 March, pp. 1641-1644.

Chevalier P, B. Schadenberg, A. Aly, A. Cangelosi and A. Tapus. 2022. Context-Awareness
in Human-Robot Interaction: Approaches and Challenges, HRI 2022, March 7-10,
Sapporo, Hokkaido, Japan, pp. 1241-1243.

Corona R. 2016. An analysis of using semantic parsing for speech recognition, Undergraduate
Honors Thesis, Computer Science Department, University of Texas at Austin, 36 pages.

Corrales-Astorgano M., C. Gonzdlez-Ferreras, D. Escudero-Mancebo and V. Cardefioso-Payo.
2024. Prosodic feature analysis for automatic speech assessment and individual report
generation in people with down syndrome, Applied Sciences, Vol. 14, 1, p. 293,
pp. 1-13.

Dahan D. 2015. Prosody and language comprehension, WIREs Cognitive Science, Vol. 0,
pp. 441-452.

DeChant C. and D. Bauer. 2022. Toward robots that learn to summarize their actions in natural
language: A set of tasks, Proceedings of the 5th Conference on Robot Learning (CoRL
2021), PMLR, London, UK, 8-11 November 2021, Vol. 164, pp. 1807-1813.

Erdogan H., R. Sarikaya, S. F. Chen, Y. Gao and M. Picheny. 2005. Using semantic analysis
to improve speech recognition performance, Computer Speech and Language, Vol. 19,
3, pp. 321-343.

Goetzee S., K. Mihhailov, R. Van De Laar, K. Baraka and K. V. Hindriks. 2024. Audio-Visual
Speech Recognition for Human-Robot Interaction: A Feasibility Study, 2024 33rd IEEE
International Conference on Robot and Human Interactive Communication (ROMAN),
Pasadena, CA, USA, 26-30 August, pp. 930-935.

Gupta K. 2008. A Concatenative Synthesis-Based Speech Synthesizer for Hindi. In: Sobh
T. (Ed.), Advances in Computer and Information Sciences and Engineering, Springer,
Dordrecht, pp. 261-264.

Haase T. and M. Schonheits. 2021. Towards Context-Aware Natural Language Understanding in
Human-Robot-Collaboration, 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), 23-27 August, Lyon, France, pp. 1648—1653.



Talking and Listening Robots 87

Hunt A. J. and A. W. Black. 1996. Unit Selection in a Concatenative Speech Synthesis System
Using a Large Speech Database, 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings, 9 May, Atlanta, GA, USA,
Vol. 1, pp. 373-376.

Jurafsky D. and J. H. Martin. 2009. Speech and Language Processing: An introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition, 2nd
Edition, Prentice Hall, Pearson Education International, London, 1024 pages.

Khurana D., A. Koli, K. Khatter and S. Singh. 2023. Natural language processing: State of
the art, current trends and challenges, Multimedia Tools and Applications, Vol. 82,
pp- 3713-3744.

Kuo Y.-C. and P-H. Tsai. 2024. Enhancing Expressiveness of Synthesized Speech in
Human-Robot Interaction: An Exploration of Voice Conversion-Based Methods, 2024
10th International Conference on Control, Automation and Robotics (ICCAR), 27-29
April, Orchard District, Singapore, pp. 1-4.

LiY. and C. Lai. 2022. Robotic Speech Synthesis: Perspectives on Interactions, Scenarios, and
Ethics, HRI 2022 Workshop: Roboldentity: Exploring Artificial Identity and Emotion
via Speech Interactions, 7-10 March, Sapporo, Hokkaido, Japan, ACM, New York, NY,
USA, 4 pages.

Nair J., A. Krishnan and S. Vrinda. 2022. Indian Text to Speech Systems: A Short Survey, 2022
International Conference on Connected Systems & Intelligence (CSI), 31 August to 2
September, Trivandrum, India, pp. 1-8.

Oralbekova D., O. Mamyrbayev, D. Kassymova and M. Othman. 2024. Current advances
and algorithmic solutions in speech generation, Vibroengineering Procedia, Vol. 54,
pp. 160-166.

Passonneau R. J., S. L. Epstein and T. Ligorio. 2012. Naturalistic dialogue management for
noisy speech recognition, /IEEE Journal of Selected Topics in Signal Processing, Vol. 6,
8, pp. 928-942.

Rabiner L. R. and R. W. Schafer. 2007. Introduction to digital speech processing, Foundations
and Trends in Signal Processing, Vol. 1, 1, pp. 1-194.

Rashad M. Z., H. M. El-Bakry, I. R. Isma’il and N. Mastorakis. 2010. An Overview of
Text-to-Speech Synthesis Techniques. In: Mastorakis N. E. and V. Mladenov (Eds.),
CIT’10: Proceedings of the 4th International Conference on Communications and
Information Technology, World Scientific and Engineering Academy and Society
(WSEAS), Wisconsin, USA, pp. 84-89.

Reimann M. M., F. A. Kunneman, C. Oertel and K. V. Hindriks. 2024. A survey on dia-
logue management in human-robot interaction, ACM Transactions on Human-Robot
Interaction, Vol. 13, 2, Article 22, pp. 1-22.

Supriyono, A. P. Wibawa, Suyono and F. Kurniawan. 2024. Advancements in natural language
processing: Implications, challenges, and future directions, Telematics and Informatics
Reports, Vol. 16, p. 100173, https://doi.org/10.1016/j.teler.2024.100173

TadaY.,Y. Hagiwara, H. Tanaka and T. Taniguchi. 2020. Robust understanding of robot-directed
speech commands using sequence to sequence with noise injection. Frontiers in Robotics
and Al, Vol. 6, Article 144, pp. 1-12.

Totsuka N., Y. Chiba, T. Nose and A. Ito. 2014. Robot: Have I Done Something Wrong?
Analysis of Prosodic Features of Speech Commands under the Robot’s Unintended
Behavior, 2014 International Conference on Audio, Language and Image Processing,
Shanghai, China, 7-9 July, pp. 887-890.

Wang W., X. Li, Y. Dong, J. Xie, D. Guo and H. Liu. 2023. Natural Language Instruction
Understanding for Robotic Manipulation: A Multisensory Perception Approach, 2023
IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29
May to 2 June, pp. 9800-9806.

Zinchenko K., C.-Y. Wu and K.-T. Song. 2017. A study on speech recognition control for a
surgical robot, IEEE Transactions on Industrial Informatics, Vol. 13, 2, pp. 607-615.


https://doi.org/10.1016/j.teler.2024.100173

5 Robots Able to See

General Aspects of
Robot Vision

5.1 INTRODUCTION

A robot without vision is essentially blind. Although blindness may prima facie appear
to be a serious impediment to robots’ performance, it is not a hindrance to robots in
performing certain tasks. Notwithstanding, robot vision (RV) is desirable in some
situations. In others, it becomes an essential prerequisite. Therefore, we undertake
to pursue the multiple facets of RV in depth in the present and the next two chapters.

This chapter outlines the fundamental principles of RV, distinguishing it from
computer vision (CV). Although the inputs to both these techniques are images, the
output of CV is information or features, whereas the output of RV is physical action
performed by the robot. RV incorporates kinematics and reference frame calibra-
tion in its algorithms. Problems unique to RV arise from the fact that the data are
collected hurriedly from a moving robot’s sensor. Often, the position and orienta-
tion of the robot’s sensor are not known clearly. Moreover, the motion of the sensor
usually causes blurring of the images. Techniques to overcome these problems will
be explained, notably active vision, anomaly and interest detection, semantic scene
understanding, place recognition, simultaneous localization and mapping (SLAM),
vision-based scene understanding, and 3D object detection.

5.2 IMAGES, VIDEO, AND VISION

5.2.1 IMAGE AND VIDEO PROCESSING

The combination of optics with signal processing gave birth to image and video process-
ing. The image is treated as a two-dimensional signal. An image file represents a single,
static frame. Video processing is a type of signal processing in which the input and out-
put are video files or streams. A video is the recording, reproduction, and broadcasting
of moving images, which is done by electronically representing a sequence of images
or frames and combining them together for the simulation of the illusion of motion and
interaction. A video file comprises a sequence of frames stored in various formats.

5.2.2 CoMPUTER VISION

By combining image and video processing with machine learning, we obtain CV.
Hence, computer vision =Optics +Image/video signal processing +Machine learn-
ing. CV is a branch of artificial intelligence for the automation of image analysis by
training computers to understand images and provide their interpretations.
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5.2.3 MACHINE ViSION AND PATTERN RECOGNITION

Machine vision (MV) is a subset of CV that utilizes CV for industrial applications,
such as automatic inspection and process control in factories. A related, though dis-
tinct, branch is pattern recognition (PR) or feature recognition, which deals with the
identification of particular patterns or features in visual data. These patterns could be
faces of individuals or objects of different shapes.

5.2.4 Rosort VisION

RV is built by integrating all the preceding techniques and using additional com-
ponents. Although RV is sometimes used synonymously with or interchangeably
with MV, it must be distinguished from it. Some applications of MV, such as visual
inspection, involve simply placing an optical sensor in front of machine parts for
fault detection. Such applications are not connected with robotics.

RV unifies the concepts of robotics into its algorithms and methodology. Examples
of robotic concepts include kinematics, calibration of reference frames, and the
robot’s ability to interact with the environment physically.

RV and action triggering involve capturing images of the scene, analyzing the cap-
tured images to recognize relevant features/objects in the images, and initiating desired
actions to execute a job. It is a multi-stage process, as illustrated in Figure 5.1. A robot
arm is shown near a workpiece from which objects will be picked up for an industrial
process. The robot arm is properly illuminated and photographed with a CCTV camera.
The captured image undergoes digitization, pre-processing, segmentation, and feature
extraction. The resulting more informative dataset is used for image classification and
interpretation. On the basis of these investigations, the requisite actions are triggered
through the actuator, enabling the robot arm to execute the job. It is noted that the two
main stages of this activity are image segmentation and feature extraction. For segmen-
tation, the pixels constituting the image are treated as data points. They are partitioned
into discrete groups based on their characteristics. A k-means clustering algorithm
divides the pixels in the image into k clusters, generating a set of segments that cover
the entire image. The features are extracted from these segments. The features are the
individual measurable properties within a recorded dataset, e.g., numerical (integral or
float), categorical (red, green, blue), ordinal (such as small, large, extra-large shirt size),
binary (yes/no), or textual. Autoencoders or principal component analysis (PCA) are
used. Autoencoders work by training a neural network in the recreation of its input data,
thereby constraining it to discover structures in the data. PCAs entail dimensionality
reduction of datasets to emphasize variations and reveal patterns/relationships.

THE WATCHFUL ROBOT

I am a robot with vision

I can see with my eyes like humans
I walk fearlessly without hesitation
To reach my destination

I am a smart sprinter

Whom no obstacles can hinder.
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FIGURE 5.1 Stages comprising robot vision and action tasks.

5.2.5 DIFFERENCES AMONG SIGNAL AND IMAGE/VIDEO
Processing, PR, CV, MV, anD RV

The subtle differences of RV with its kin techniques can be easily visualized by look-
ing at and comparing their inputs and outputs. The input to signal processing is an
electrical signal, the raw signal. Its output, too, is an electrical signal, the processed
signal. Both the input and output of image and video processing are images: the raw
and processed images. For image processing, these are still images, while for video
processing, they are moving images. The input as well output of PR is information.
From CV, the input and output begin to differ. CV takes images or videos as input
and dumps out information about the image or video, or its relevant features. Similar
is the case with MV also. However, RV takes in images or video as inputs to generate
physical actions as outputs. Briefly, we can state that:

Input and Output of Signal Processing: Electrical signals
Input and Output of Image Processing: Images

Input and Output of PR: Information

Input of CV: Images/video, Output: Information
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TABLE 5.1
Difference between Robot Vision and Computer Vision
Point of
SI. No.  Comparison Computer Vision Robot Vision
1 Scope It is a field of artificial It applies computer vision to robots. Hence, it
intelligence. is a computer vision subfield that is
particularly relevant to robotics.
2 Function It analyzes images It incorporates robotic techniques, such as
and videos. kinematics, into computer vision to enable
robots to interact effectively with their
environment.
3 Applications Face recognition, video Assistance in production lines and factories;
surveillance, and in hospitals (to perform surgical
medical diagnostics. procedures); in reconnaissance, surveillance,

and space operations; and in search and
rescue missions in difficult terrains.

Input and Output of MV: Same as for CV
Input of RV: Images/video, Output: Physical action

Table 5.1 presents the major contrasting features between RV and CV.

5.3 COMPUTER VISION

CV is supported on three technological pillars, viz.,

1. image classification,
ii. image classification with localization, and
iii. object detection.

5.3.1 IMAGE CLASSIFICATION

Image classification is a two-step process consisting of:

i. Categorization of Pixels: Groups of pixels or vectors found in an image are

subdivided into different categories on the basis of pre-specified rules, and

ii. Labeling of Pixel Categories: Labels are assigned to the categories of pixels
or vectors contingent on the particular rules.

The various techniques used in image classification fall into one of the two types:

i. Unsupervised Image Classification: It is a fully automated method that does
not require any data for training. Instead, it applies machine learning algo-
rithms for analyzing and clustering the given unlabeled sets of data. The
clustering is done by discovering hidden patterns or groups of data within
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the supplied data. Two common machine learning algorithms used are
k-means clustering and the iterative self-organizing data analysis technique
algorithm (ISODATA).

ii. Supervised Image Classification: In this approach, previously classified
samples of data or pixels, called known reference samples, are used to train
the unknown samples of data or pixels. Two popular algorithms used are
support vector machine (SVM) and artificial neural networks (ANNS).

We shall describe k-means clustering, ISODATA, and SVM algorithms, and then
explain the image classification procedure. Thereafter, we shall move to neural
networks.

5.3.1.1 K-Means Clustering

As we know, the k-means clustering is an unsupervised machine learning algorithm
(Ikotun et al. 2023). It is used to group unlabeled data points into k clusters. The clus-
tering is performed by randomly selecting a set of central points, known as centroids.
Then the data points are assigned to one of the k clusters. Assignment of data points
is based on the nearness of a data point to the centroid of a particular cluster. In this
way, all the data points are assigned to their respective clusters. Once this assign-
ment has been completed, the clusters with new centroids are chosen to minimize
the sum-of-squares distances between each data point and its corresponding cluster
center. This minimizes the mean squared error (MSE), indicating the within-cluster
variability. The process is iteratively repeated until satisfactory clustering is achieved.

5.3.1.2 ISODATA

ISODATA is a data analysis technique for unsupervised classification of data. It is
iterative and self-organizing (Memarsadeghi et al. 2007). It is a modified version
of k-means clustering designed to overcome its shortcomings. k-Means clustering
assumes prior knowledge of the number of clusters, whereas ISODATA allows for
a variable number of clusters. In the ISODATA technique, the centers of clusters
are placed randomly. The data points are assigned to a cluster based on the short-
est distance between the data point and the cluster center. The standard deviation ¢
within each cluster, as well as the distance d between the centers of the clusters (the
inter-center distance), is calculated. Each cluster is decomposed into two clusters if ¢
exceeds a user-predefined threshold and the number of pixels is double the threshold
value for the minimum number of data points. On the opposite side, the clusters are
blended together if d is less than a threshold distance or if the number of data points
in a cluster falls below a threshold value. An iteration is performed using the new
centers of clusters. The iterations are repeated until the distance d decreases to less
than the threshold value or the average change in d between successive iterations
decreases below a threshold.

5.3.1.3 The SVM Algorithm

The SVM is a supervised machine learning algorithm used for classification and
regression tasks. It works by finding the hyperplane that separates the different
classes in the feature space. The features are the colors of pixels, the textures, and the
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edges in the images. SVM determines the hyperplane that maximizes the distance
between the closest points of the different classes, known as the margin. The points
located closest to the hyperplane are designated as the support vectors. It exhibits
less vulnerability to overfitting than a neural network. Overfitting occurs when an
algorithm fits too closely and tightly to its training data, such that it cannot generalize
and cannot predict accurately when exposed to new data.

5.3.1.4 Image Classification Procedure

The image classification setup shown in Figure 5.2 applies supervised machine learn-
ing algorithms to train a model, known as the classifier, by feeding sample images
along with their corresponding class labels. The trained model is then applied to
classify unknown images submitted for analysis.

On the left-hand side of the diagram in Figure 5.2 is the training side, consisting of
an image database from which specimen images are pre-processed, feature extraction is
performed on the pre-processed sample images, and they are annotated with associated
ground truth labels. The classifier model is trained using the features and class labels.

On the right-hand side of the diagram, there is the testing side. After the learn-
ing process is completed, unknown images are pre-processed, followed by feature
extraction. The features of the query image are fed into the classifier, yielding the
class label of the image.

5.3.1.5 The ImageNet 2012 Challenge and the Deep Learning
Revolution in Image Classification

September 30, 2012, is a red-letter day in the annals of deep learning. On this day,
a convolutional neural network (CNN) named AlexNet (Krizhevsky et al. 2017)
successfully met the ImageNet challenge. It displayed excellent performance on
ImageNet, the contemporary dataset of that time. The participants in this compe-
tition were required to accurately detect various objects and scenes, and classify
images from a truncated list of 1,000 ImageNet classes. The AlexNet scored lower
than a 25% error rate. The runners-up model was 9.8% points behind the winner.
We shall first describe the main aspects of ImageNet, and then move on to the deep
learning models, starting with AlexNet.

5.3.1.6 ImageNet: The Dataset for Image Classification

The ImageNet is a hierarchical database of images for vision research (Deng et al.
2009). This ontology of images is highly useful for training machine learning models
in image classification and other image processing tasks. Ontology in Al refers to a
set of concepts and categories within a knowledge domain that represent their prop-
erties and mutual relationships. The ontology of images, therefore, holds the key to
the retrieval of images based on their contents.

By a hierarchical database is meant a model of data representation in which data
is organized in the form of a tree structure. Such data organization makes navigation
and searching easier. A tree is a data structure consisting of several nodes. The node
is a point of intersection or branching of lines or pathways. The nodes are joined to
each other by links. The single node at the highest level is referred to as the root node.
Each element of the tree data structure has one parent node. It has either zero or more
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FIGURE 5.2 Workflow of image classification.

child nodes. The parent-to-child relationship is one-to-many. The child-to-parent
relationship is one-to-one.

ImageNet utilizes the hierarchy of WordNet for the organization of images.
WordNet® is a structured collection of information about words of the English lan-
guage, commonly called a lexical database. In this database, English nouns, verbs,
adjectives, and adverbs are arranged into sets of synonyms known as synsets.

Constructed on the WordNet spinal structure, ImageNet seeks to populate most of
the synsets of WordNet, numbering ~80,000 with around 500-1,000 tidy images of
high resolution, providing an open-source dataset of ~5x 107 annotated clean photos
for research purposes.
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5.3.1.7 Deep Learning Models for Image Classification

i AlexNet: The AlexNet is a pioneering CNN architecture. It is a deep CNN
comprising five convolutional layers, numbered 1-5, and three fully connected
layers, 6—8 (Figure 5.3). The input image to AlexNet is a 227x227x3 RGB
image (227 pixels wide and 227 pixels high image with three color channels).
The first convolutional layer has 96 filters of size 11X 11 X3 and a stride of 4.
The output image from this layer has the dimensions 55 X 55 X 96 (a 3D volume
with dimensions of 55 pixels in width, 55 pixels in height and 96 pixels in depth,
indicating the number of layers in the stack). The max-pooling layer (with a
filter size of 33 and a stride of 2) reduces image dimensions to 27X 27 X 96.
The second convolutional layer has 256 filters of size 5x5x96, a stride of

FIGURE 5.3 Detailed AlexNet architecture.
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1, and a padding of 2. The output image dimensions after this layer become
27%27x256. Then the max-pooling layer (with a filter size of 3 X3 and a stride
of 2) reduces the image dimensions to 13X 13x256. The third convolutional
layer has 384 filters of size 3%xX3%256, a stride of 1, and a padding of 1. The
output dimensions after this layer are: 13X 13x384. The fourth convolutional
layer has 384 filters of size 3x3x 384, a stride of 1, and a padding of 1. The
output dimensions after this layer are: 13X 13x384. The fifth convolutional
layer has 256 filters of size 3x3x 384, a stride of 1, and a padding of 1. The
output dimensions after this layer are: 13x13x256. The max-pooling layer
(with a filter size of 3 X3 and a stride of 2), decreases the image dimensions to
6 6x256. In the sixth layer, the output from the previous layer is flattened to
9,216 units. Next to that, a fully connected layer consists of 4,096 units, all of
which are fully connected to the previous 9,216 units. Dropout has been used
for avoiding overfitting. The seventh layer is a fully connected layer with 4,096
units, which are all fully connected to the units of the previous layer. Dropout
has been used as in the preceding layer. The eighth layer feeds into a softmax
classifier having 1,000 classes distribution.

A CNN is a feed-forward neural network containing a stack of convolutional lay-
ers. A convolutional layer is contemplated as made of many square templates known
as convolution kernels, which are mathematically matrices of weights. The kernels
slide over the image looking for patterns. When the pattern of the kernel matches
a portion of the image, the kernel gives a large positive value. Otherwise, a value
of zero or a smaller value is registered. Padding means adding extra pixels, usually
zeros, around the edges of the input image before convolution to ensure that the
output feature map maintains the same spatial dimensions as the input image. Stride
determines the size of the step by which the filter moves across the input image.

The sequence of layers in AlexNet is represented by the equation:

AlexNet

(Convolution layer 1+ ReLU activation function + Local response normalization

o

+(Convolution layer 3+ ReLU activation function) + (

(
(
(
(

+ Maxpooling ]

Convolution layer 2 +ReLU activation function + Local response normalization

+ Maxpooling

Convolution layer 4

+ReLU activation function

+(Convolution layer 5+ ReLU activation function + Maxpooling)
+(Fully connected layer 6+ ReLU activation function + Dropout)
+(Fully connected layer 7+ ReL.U activation function + Dropout)

+(Fully connected layer 8+ Softmax activation function)

)

G.1)
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The convolution layer of a CNN is the feature extractor layer. It slides a filter over the
image to identify features and build a feature map of the image.

The rectified linear unit (ReLLU) activation function is the mathematical function
expressed by the equation

ReLU f (x) = max (0, x) (5.2)

It converts all the negative values to zero, thereby introducing non-linearity in the
deep learning model. It overwhelms the vanishing gradient problem, enabling the
neural network to learn more complicated data relationships.

Unlike the tanh and sigmoid functions, the value returned by the ReLLU activation
function is not restricted within a defined range. This non-restriction imposes the
constraint of local response normalization (LRN).

The LRN is a neurobiological phenomenon-based concept of lateral inhibition in
which the output of neurons is locally normalized. The LRN assists neurons in learn-
ing from intricate data patterns in three ways:

a. By suppression of feeble activations and laying emphasis on the intense
activations,

b. By contrast creation in a region through the production of a local maximum
to improve sensory perception, and

c. By raising the sensitivity of a neuron to its proximate neurons.

LRN is implemented in two modes:

Mode 1: Within-Channel Normalization: Here, local regions undergo spatial
extension, but they remain in separate channels.

Mode 2: Across-Channel Normalization: In this case, the local regions extend
across neighboring channels, but they do not have a spatial limit.

Some of the LRN/CNN layers are followed by max-pooling layers. The max-pooling is
a down-sampling operation. It involves the sliding of a window called the filter or ker-
nel across the input image data and picking up the maximum value within the window.

The fully connected (FC) layer is a neural network layer that obeys the condition
that every neuron in the present layer is connected to every neuron in the preceding
layer, thus producing complete linkages. It generates the final output predictions of
the network.

Dropout is a regularization method used for prevention of overfitting of a neural
network. It does so by modification of the structure of the network. Dropout prevents
co-adaptation, a condition in which the neural network becomes heavily dependent on
certain connections. During dropout, the input and output layers remain untouched.
But some neurons of a chosen layer, along with their connections, are randomly
deleted with a specified probability. The network parameters are then updated in
accordance with the learning process. In the subsequent iteration, additional neu-
rons are deleted, and network training is redone. Dropout rates vary from 0.2 to 0.5,
depending on the neural network depth or the extent of the dataset. The larger the
dataset, the lower the dropout rate needed, and hence, the less aggressive the dropout.
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The softmax activation function is used in the final layer of an NN model for the
transformation of raw output scores called logits into probability values. This is done
by taking the exponential of each output. The values thus obtained are normalized
by division by the sum-total of all the exponentials taken. Through this process, all
values are confined within the bounds of (0, 1). Also, they add up to 1. Hence, they
are construed as probabilities.

The AlexNet model could not be accommodated in a single graphical processing
unit’s (GPU) memory. So, it was split into two halves. Each half was run on one GPU
by placing Y2 the total number of kernels or neurons on each GPU. By cross-GPU
parallelization, the GPUs were able to directly read from/write to each other’s mem-
ory. This resulted in the omission of routing via the memory of the host CPU.

The AlexNet has 6x 107 parameters and 6.5 X 103 neurons, and is trained for the
classification of 1.2x 10° images into 103 classes. The top-1 error rate is 37.5% and
the top-5 error rate is 17% (Krizhevsky et al. 2017).

The AlexNet demonstrated the successful application of deep neural networks
to extremely large datasets. Prior to the advent of AlexNet, CV was predominantly
done using a machine learning model known as an SVM, and by shallow neural net-
works. An Alex-based technique is developed for the detection and classification of
the grasped objects in robotics (Abbas et al. 2020).

5.3.1.8 The Visual Geometry Group-16 (VGG-16) Architecture

The VGG-16 is a deep CNN architecture (Simonyan and Zisserman 2015; Bagaskara
and Suryanegaran 2021; Hussain et al. 2024) consisting of 16 layers, 13 convolutional
layers, and three fully connected layers (Figure 5.4). Let us explain the top of the
diagram in Figure 5.4: The 13 convolution layers are numbered 1, 2, 3, ..., 13. The
convolution layers 1, 2, and 3 each have a ReLU layer. Max-pooling layers are placed
after (convolution layer 2 +ReLU), and convolution layers 4, 7, 10, 13. Input image
dimensions are: 224 X 224 x 3 pixels. The output image dimensions after the convolu-
tion layer 2+ ReLU are: 224 X224 x 64 pixels, and that after the next pooling layer
are: 112x112x 64 pixels. The output image dimensions after the convolution layer
4 are: 112x 112x 128 pixels, and that after the next pooling layer are: 56 X 56 x 128
pixels. The output image dimensions after the convolution layer 7 are: 56 X 56 X 256
pixels, and that after the next pooling layer are: 28 X28x 256 pixels. The output
image dimensions after the convolution layer 10 are: 28 X 28 X 512 pixels, and those
after the next pooling layer are: 14 x 14 X512 pixels. The output image dimensions
after the convolution layer 13 are: 14 x 14 X 512 pixels, and that after the next pooling
layer are: 77X 512 pixels. The output image dimensions after the fully convolution
layer 1 are: 1x1x4,096 pixels, that after fully convolution layer 2 are: 1x1x406
pixels and that after fully convolution layer 3 are: 1 x 1x 1,000 pixels.

The bottom of the diagram in Figure 5.4 provides a simple representation of the
dimensional changes in the image. The convolution layers are shown by white rectan-
gular boxes with gray sides, the pooling layers by black rectangular boxes, the fully
convolutional layers by white rectangular boxes and the softmax layer by a dotted box.

A comparative assessment of neural networks with varying depths was con-
ducted using an architecture with very small (3 x3) convolution filters. When the
network depth was increased to 16—19 weight layers, an appreciable enhancement in
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FIGURE 5.4 Structural details of VGG-16 Net.

network performance was observed for large-scale image recognition compared to
existing techniques.

A deep learning method for human facial expression recognition is developed
based on an improved VGG-16 CNN (Wu and Zhong 2021).

5.3.1.9 Very Deep CNNs
Inception vl (GoogLeNet) was a cutting-edge deep neural network technology in the
ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014; Szegedy
et al. 2015). It is a 22-layer deep network for image classification and detection.
CNNs having up to 34 weight layers can perform efficient optimization over long
sequences, such as a vector of size 32,000 demanded for processing acoustic wave-
forms (Dai et al. 2017). A CNN with 18 weight layers has more than 18% higher
absolute accuracy than a CNN with 3 weight layers.
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5.3.2 NEURAL ARCHITECTURE SEARCH

The neural architecture search (NAS) is a technique for the automation of the design
of ANNSs using search algorithms for exploration and discovery of ideal neural net-
work architectures for assigned tasks (Elsken et al. 2019; Chitty-Venkata and Somani
2022). A search space of possible architectures is defined. Deep reinforcement learn-
ing (DRL) methods are applied to find the most effective architecture in solving CV
problems, e.g., landmark detection, object detection/tracking, registration on 2D/3D
image data, image segmentation, and video analysis (Le et al. 2021).

5.3.3 PROGRESSIVE NEURAL ARCHITECTURE SEARCH

The progressive neural architecture search (PNAS) is a method for learning the
structure of CNNs using a sequential model-based optimization (SMBO) strategy.
The SMBO is a formalization of Bayesian optimization (BO) (Lacoste et al. 2014).
The BO is a Bayesian theorem-based approach for optimizing decision-making about
which parameter needs to be set next for an iteration by applying a real-valued func-
tion called the objective function, with conditional equations defining constraints.
The objective function calculates the quantity to be optimized in terms of certain
decision variables that can be chosen for their maximization or minimization to
understand how the prior settings were performed. Two main components of BO are:
a probabilistic model that approximates the objective function (surrogate model) and
an acquisition function for guiding the choice of the next evaluation point in line with
the surrogate model using the predicted mean and variance produced by the model.

In SMBO, the search algorithm is entrusted with the work of searching a neural
network architecture space of cell structures, rather than a complete CNN (Liu et al.
2018). After learning a cell structure, it is stacked the required number of times to
produce the final CNN. For stacking, the highest-ranked structure is nominated.

The search begins with simple models and forges ahead toward complex ones.
During this search, the unlikely structures encountered on the way are pruned out.
Concurrently with the quest for cell structures in an increasing order of complexity,
another process is carried out, namely, the learning of the surrogate model that regu-
lates the search in the structure space.

This method yields accuracies comparable to ultra-modern technological achieve-
ments on the CIFAR-10 dataset (Canadian Institute for Advanced Research, 10
classes) and ImageNet. It is fivefold more efficient than the RL-aided technique and
eightfold faster than it (Zoph et al. 2018).

5.4 DISCUSSION AND CONCLUSIONS

In this chapter, we learnt the key terms of RV, followed by the basic principles of
image processing to transform raw visual data into usable information for robots
(Table 5.2). Image processing lays down the foundation for RV by allowing the robots
to interpret visual data captured by their cameras as meaningful information. Before
analysis, the quality of the input image is enhanced by performing operations such
as filtering, smoothing, and color conversion. Image classification tells robots what
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TABLE 5.2
Principal Concepts and Knowledge Acquired from This Chapter
Knowledge

SI. No. Acquired Explanation

1 Summary Key terms related to images, video, and vision were defined, including
image and video processing, computer vision, machine vision,
pattern recognition, and robot vision. Hair-splitting differences in the
meanings of seemingly similar terms were pointed out.

2 Image classification The image classification algorithms discussed include k-means

algorithms clustering, ISODATA, and support vector machine. The image
classification procedure was expounded.

3 Image database The ImageNet 2012 challenge and the deep learning revolution in
image classification, and the ImageNet hierarchical database for
vision research were described.

4 Deep learning models ~ Among the deep learning models for image classification, the AlexNet
and the Visual Geometry Group-16 architectures were considered;
these are pioneering convolutional neural network architectures in
computer vision. Inception v1 is a deep CNN architecture.

5 Design automation The design of artificial neural networks is automated with a neural
architecture search technique.

6 Learning methods Progressive neural architecture search, a technique for learning
convolutional neural network structures, was discussed.

7 Keywords and ideas Images, video, and vision; signal, image, and video processing;

to remember computer vision, machine vision, pattern recognition, robot vision,

image classification, k-means clustering, ISODATA, SVM algorithm,
The ImageNet 2012 challenge, deep learning models for image
classification, the Visual Geometry Group-16 architecture, very deep
CNNgs, neural architecture search, progressive neural architecture
search

object is present in an image. The identified object is assigned a category label such
as a person, a table, or a car. However, the knowledge about the identity of an object is
insufficient for manipulating the object. The robot must be able to identify the loca-
tions of different objects within an image. For navigating autonomously, the robot
must recognize objects and locate definite landmarks. Beyond basic image classifica-
tion lies a more complex technique called object detection, which identifies multiple
objects in an image. It pinpoints the exact positions of the objects within an image
by marking their boundaries with bounding boxes. Object detection is the topic of
the next chapter.
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Robot Vision
Object Detection by Robots

6.1 INTRODUCTION

In this chapter, we delve into object detection, a more intricate process compared to
image classification because it involves both image categorization and localization,
and therefore requires more computational power than image classification (Bai et al.
2020; Sun et al. 2024).

6.2 2D OBJECT DETECTION

2D object detection is a robot vision technique employed by robots to identify and
locate various objects in images. It is implemented by collecting a variety of images
that contain the objects that need to be detected. Then, boxes are drawn around the
objects, and the objects are labeled with an annotation tool. Neural networks are
trained for recognizing the objects in images.

2D object detection provides a fundamental level of visual understanding to robots
by identifying objects’ presence, location, and category within a 2D image plane. It is
used in various robotic operations for:

i. Robot navigation to identify obstacles, lane markings, or waypoints on a flat

plane surface,

ii. Robotic pick-and-place operations for locating specific objects on a table or
conveyor belt,

iii. Robotic inspection to identify components on a product platform and its
defects, and

iv. Automating barcode/QR code reading by identifying barcodes for inventory
management and tracking of items in warehouses by robots.

But 2D object detection only provides planar information. The appearance of an
object varies with the angle of view, raising issues of perspective. Therefore, it is
unsuitable for tasks that require precise 3D object localization. 3D object detection
is similar to 2D object detection, with the additional capability to understand depth
and spatial relationships. 2D object detection is preferred for a robot operating in a
well-structured environment with minimal variations in depth. The primary reasons
are the lower cost and easier implementation of 2D cameras compared to their 3D
counterparts. Furthermore, 2D cameras can process images much faster than 3D
cameras and are well-suited to high-speed production lines.
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Essentially, 2D object detection performs two operations entailing 2D image clas-
sification and localization (Zou et al. 2023):

i. Classification or Identification of Objects in an Image: It determines which
objects are present in a given image and assigns them the correct class
labels.

ii. Localization: It gives the bounding boxes for the identified object(s). Thus,
the locations of the objects detected are marked.

6.2.1  DIFrFeRENCE BETWEEN IMAGE CLASSIFICATION WITH
LocALizATION AND OBJECT DETECTION

Like 2D object detection, image classification with localization performs the dual
task of classification of the main object in an image, along with its localization within
the image. Its purpose is split up into the two sub-tasks:

i. Main Object Classification: The main object in the image is classified by
determining its category.

ii. Localization of the Main Object: The position and size of the classified
object are ascertained by defining a box surrounding the main object found
in the image to indicate its exact location. The box is known as the bound-
ing box.

Image classification with localization is a simpler process concerned with the clas-
sification of the main object found in an image and its localization within the image.
Object detection is a complicated process of classifying and localizing all the objects
in an image. It is essential to emphasize and clarify that image classification with
localization is a sub-activity of 2D object detection (Kniazieva 2023).

6.2.2 PASCAL VisuaL OBject Crasses (VOC) DATASET
FOR BENCHMARKING OBJECT DETECTION

The PASCAL VOC (Pattern Analysis, Statistical Modeling, and Computational
Learning Visual Object Classes) dataset is a publicly available and widely used ref-
erence dataset for evaluation of computer models for object detection and localiza-
tion (Everingham et al. 2010). It consists of 20 object categories, including animals,
dining tables, sofas, TVs/monitors, boats, bicycles, cars, airplanes, and people. It
features annotations such as pixel-level segmentation, bounding boxes, and class
labels, as well as appraisal matrices, e.g., mean Average Precision (mAP) for object
detection and classification, and segmentation masks for image segmentation. The
PASCAL VOC dataset comprises three subsets:

i. Training subset containing images for model training,
ii. Validation subset with images for model validation, and
iii. Test subset with images for benchmarking trained models.
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6.2.3 TRADITIONAL SLIDING WINDOW ALGORITHM FOR OBJECT LOCALIZATION

A practical example of object detection using a sliding window is a service for the
visualization of the location of a desired book in a library. In this example, CCTVs
connected to a cloud server having databases of book title images provide the images
for feature matching (Lee et al. 2017).

The algorithm consists of the determination of a quality function, e.g., a clas-
sifier score at several rectangular subregions of the image. The position at which
the classifier score has the maximum value is decided as the location of the object.
Accordingly, a fixed-size rectangular window slides across the image in left-to-right
and top-to-bottom directions. As sliding takes place, a portion of the image is con-
fined within the window. Features such as pixel intensities and histogram-oriented
gradients (HOGs) are extracted from the portion of the image that falls within the
window. These features are supplied to a classifier, e.g., a support vector machine
(SVM) or a convolutional neural network (CNN), to determine whether the object of
interest is enclosed within the window. If the answer is affirmative, a bounding box
is drawn surrounding the object found.

In the sliding window algorithm shown in Figure 6.1, a small square/rectangular
fixed-size window smaller than the examined image is created at the top-left corner

FIGURE 6.1 The sliding window algorithm.



106 Al Robotics

of the image. The image is cropped and fed to the CNN. CNN analyzes the contents
in the section of the image presented to it, looking for the objects or patterns that it
has been trained to recognize. After analysis of one section of the image, the window
slides a small distance to the right. Similar image analysis is performed for this sec-
tion also. In this way, the image analysis is carried out for the N sections in the image,
covering the complete image analysis. The cropped images with classified objects
obtained during all these sliding operations are delivered as the output.

The sliding window algorithm is supplemented with image pyramids to detect
objects of different sizes. The image pyramids consist of a stacking of images with
the highest-resolution image at the foundation or base and the lowest-resolution
image at the uppermost point or apex, resembling a pyramidal shape. The sliding
window plus image pyramid combined effort entails resizing of the image to multiple
scales and running the sliding window algorithm at each scale.

The sliding window method provides a straightforward implementation that
accommodates a wide range of classifiers. It must be noted that complex-shaped
objects or those varying considerably in appearance, as well as situations demanding
window sliding at multiple scales, are more computationally intensive. Therefore,
these cases are tricky and demand a lot of effort. To address these cases, the search
effort is reduced by limiting it to a coarse grid of possible locations. Along these
lines, the speed of computation is increased. However, this high speed is achieved at
the cost of sacrificing the accuracy of localization.

6.2.4 BRANCH-AND-BOUND SCHEME-BASED EFFICIENT SUBWINDOW SEARCH

A targeted search is carried out in place of the complete search space. The targeted
search is performed by decomposition of the parameter space into disjoint subsets at
the primary stage of the search process. During decomposition, some portions of the
parameter space are rejected. These are the portions where the quality function score
is below a certain score from some earlier probed state. The search ceases as soon as
a rectangle is identified that has a quality score on a par with the upper bound of the
remaining prospective regions. Average precision scores of 0.240 for cats and 0.162
for dogs are obtained on the PASCAL VOC 2007 dataset (Lampert et al. 2008, 2009).

6.2.5 R-CNN: RecioNn-Basep CNN

The R-CNN was a pioneering effort toward the application of CNNs in object detec-
tion (Girshick et al. 2014). It is a machine learning model consisting of three modular
sections:

i. Category-Independent Region Proposal Generation Module: Classification
of a huge number of regions is unnecessary. To bypass this lengthy and
cumbersome process, the selective search algorithm is applied to extract
merely 2,000 regions from the image. We proceed with these extracted
regions further. These are named as region proposals.

In the selective search algorithm, the image is over-segmented on the
basis of the intensities of pixels. The bounding boxes of the segmented parts
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are added to the list of region proposals. Then the adjoining segments are
grouped based on similarity considerations. The list of region proposals is
fittingly updated. In this way, the segments grow in size. Thus, the region pro-
posals are crafted from smaller to larger segments. This crafting takes place
in a bottom-up fashion. Class labels are ascribed to the region proposals.

ii. Feature Vector Extraction Module: A large CNN extracts fixed-length fea-
ture vectors from each region proposal in this module. These feature vectors
are extracted for predicting the class and the bounding box of the region
proposal. To this end, the region proposals are warped into a square and
feed-propagated through the CNN, producing a 4,096-dimensional feature
vector. The features are fed from the output layer of the CNN to SVMs,
which perform classification of the regions.

iii. Category-Specific Linear SVM Module: It performs classification of the
regions. Multiple SVMs are trained for object classification. Each machine
individually determines whether the input supplied contains a specific class.
A linear regression model specially trained for the purpose predicts the
ground-truth bonding box. This box is the hand-labeled bounding box of an
object used for data training and testing.

In the R-CNN pipeline displayed in Figure 6.2, a selective search is performed on
the image to produce ~2,000 region proposals. These are the bounding boxes around

FIGURE 6.2 The R-CNN pipeline.
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the objects of interest. From these region proposals, the warped regions 1, 2, 3, ..., N
are generated by resizing to a predefined size. The warped regions are conveyed to
a pretrained CNN to extract a feature vector of length 4,096 from each region pro-
posal. The features are sent to a SVM engaged in classification to predict the class of
the object. The features are passed through a regressor to make the bounding boxes
of the detected objects.

Thus, the R-CNN combines CNNs with region proposals for an image. Hence, it
enables the production of bounding boxes that contain objects and their correspond-
ing classes.

6.2.5.1 The Bottleneck Faced by an R-CNN

The crux of the difficulty arises from the independent feed-forwarding of individual
region proposals. Obviously, these proposals overlap in certain regions. So, the same
region may be subjected to feature extraction on several occasions. Repeated feature
extraction from the same region is exasperating. It leads to repetitive computation,
resulting in the wastage of time and resources.

6.2.5.2 Fast R-CNN: Fast Region-Based CNN

It is an improved version of the original R-CNN. In this version, the input image
undergoing feature extraction is the complete image, rather than region proposals.
Thus, the overlapping issues encountered with R-CNN are circumvented (Girshick
2015; Shahin et al. 2021). A convolutional feature map of the full image is generated.
From this feature map, the regions of interest (ROIs) of varying shapes are extracted.
From the ROIs, features of the same shape are pulled out for easy concatenation. In
order to do this, the fast R-CNN incorporates an ROI pooling layer. From the ROI
feature vector, a softmax layer predicts the class of the proposed region. The regres-
sor also provides the offset values for the bounding box.

The fast R-CNN flowline is depicted in Figure 6.3. A selective search is applied to
the image to generate a set of region proposals. The generation of the region proposal
set is followed by the creation of warped regions 1, 2, 3, ..., N. Simultaneously with
the selective search performed on the image, a CNN extracts features from the entire
image, FM-1, FM-2, ..., FM-N. The region proposals and the features are fed to the
ROI pooling layer. This layer divides each region proposal into a grid of cells. Max
pooling is done on each cell of this grid. The max pooling returns a single value for
the features within the cell. The fixed-length feature vectors for each region proposal
are sent to fully connected (FC) layers. The softmax classifier is a machine learning
algorithm. It gives probabilities for each class label. The regressor predicts the loca-
tion of an object by training a model to determine the coordinates of the boundary
box surrounding the object.

6.2.5.3 Faster R-CNN: Faster Region-Based CNN

It is an improved version of fast R-CNN (Ren et al. 2015, 2017). The procedure fol-
lowed in faster R-CNN differs from that of fast R-CNN. It substitutes the large number
of regional proposals of R-CNN with a jointly trained region proposal network (RPN).
Here, a ROI alignment layer is used in place of the ROI pooling layer in fast R-CNN.
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FIGURE 6.3 The fast R-CNN flowline.

The alignment layer applies bilinear interpolation. By this interpolation, it maintains
the spatial information on the feature maps, thereby facilitating pixel-level prediction.

Figure 6.4 shows the faster R-CNN workflow. The input image is fed into a
CNN, which acts as a feature extractor for the entire image. The extracted features
are supplied to a RPN. This is a CNN. The RPN slides filters over the features
received from the first CNN to make region proposals. These region proposals
and the feature maps are subjected to the ROI pooling operation. Max pooling is
performed on non-uniformly sized inputs to produce fixed-size feature maps for
various ROIs. The fixed-size patches move to the fully convolutional layers. A
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FIGURE 6.4 Flow sequence of a faster R-CNN system.

softmax classifier layer predicts the class of the object within the region proposal.
The bounding box regression layer forecasts the refined bounding box coordinates
for the classified object.

6.2.5.4 Mask R-CNN: Mask Region-Based CNN

Mask R-CNN is an R-CNN for instance segmentation. It is an extension of faster
R-CNN (He et al. 2017; Le et al. 2018). It is simple in training and offers easy gen-
eralization to other tasks, such as human poses, which can be estimated in the same
framework. In Mask R-CNN, a branch is added in parallel with the bounding box rec-
ognition branch. The added branch makes a prediction of an object mask. It thereby
endows the capability for precise fine-grained segmentation and identification of the
pixel-wise boundaries of each object, in addition to the usual object detection job.
Thus, it can predict the shape of the object.

6.2.6  UNsuPERVISED OBJECT DiscOoVERY AND ITs LOCALIZATION

A part-based region matching method applies a probabilistic Hough transform-
supported matching algorithm. A standout score is introduced for foreground local-
ization (Cho et al. 2015). The probabilistic Hough transform employs a small random
sample of edge points instead of the entire set of edge points. This quickens the algo-
rithm (Kiryati et al. 1991). Evidently, the sample should not be so small that detection
of features becomes unfeasible.

For object detection experiments, a set of bounding boxes is formed around the objects
and object parts. These object-containing participating regions are matched across
images using the Hough transform. The Hough transform assigns a confidence value to
each participant. The confidence is determined from both appearance and consistency
viewpoints. The dominant objects are marked by comparing the scores of the contending
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regions. The formulated procedure is evaluated on PASCAL-2007 dataset by choosing
the regions whose scores are higher than those of other regions containing the objects.

6.2.7 OBjecT DETECTION BY SELF-SUPERVISED FEATURE LEARNING

During the training for self-supervised learning, a premeditated excuse task called
the pretext task is designed for solution by a CNN (Jing and Tian 2019). As exam-
ples of pretext tasks, image generation models learn by training on large datasets of
images to understand and generate images based on visual features. Context-based
tasks utilize context features, e.g., the context similarity and spatial relations among
patches. In semantic labeling (assignment of class labels to pixels), the network is
trained through extemporaneous labels. In a cross-modal strategy, the network is
trained through the verification of correspondence between two channels of input
data. The downstream tasks include image classification and object detection.

Based on the attributes of data, pseudo labels for the pretext task are spontane-
ously produced. In so doing, the neural network undergoes self-supervised training
to learn the object functions of the pretext task. Thenceforth, the learned features
are ferried to postliminary tasks as pretrained models to subdue overfitting. Features
from only the first several layers are usually conveyed because the shallow layers
capture low-level features, e.g., corners, edges, and texture. The deeper layers seize
the high-level features of the task.

The performance of self-supervised and supervised methods on downstream
object detection missions differs by less than 3% on standard datasets. This per-
formance comparison suggests the generalizability of learned features by self-
supervised mechanisms.

6.3 DISCUSSION AND CONCLUSIONS

2D object detection is essential for robot vision. It allows robots to identify and locate
objects within their 2D camera view. It is crucial for basic tasks like navigation,
manipulation, and interaction of robots with their environment. It provides valuable
assistance to robots in obstacle avoidance by detecting walls, furniture, or people in
a 2D camera view. It facilitates easy grasping of an object by a robot by precisely
locating the position of an object in a 2D image. The requisite guidance is furnished
to a robot manipulator to enable it to grasp the object. Object detection through 2D
camera vision helps in identifying defects or specific objects.

On the whole, the robots can understand the layout of their environment. They
can identify obstacles and plan movement paths. The main advantage of 2D object
detection is that the algorithms employed here are faster and more computationally
efficient than 3D algorithms. Hence, they enable real-time robot vision applications,
even in complex scenarios that require advanced 3D perception. The basic under-
standing provided by 2D object detection is readily augmented with techniques like
depth estimation to construct a more comprehensive 3D picture of the environment.
Thus, it prepares the groundwork for advanced perception of the environment by
robots. Table 6.1 gives glimpses of important insights gained from Chapter 6. A
perusal of advanced topics in robot vision is deferred to the ensuing Chapter 7.
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Central Theme and Knowledge Gained from This Chapter

TABLE 6.1
Knowledge
SI. No. Gained
1 Summary
2 Sliding window
algorithm
3 Branch-and-bound

scheme-based
efficient
subwindow search

4 Deep learning model

5 Unsupervised/
supervised learning

6 Keywords and ideas to
remember

Explanation

2D object detection, a robot vision technique that allows
robots to identify and locate multiple objects in planar
images, is broader in scope than image classification with
localization, which ascribes a single label to an entire image.
Features of the PASCAL Visual Object Classes (VOC)
dataset were presented. It is a widely acclaimed dataset used
by researchers for benchmarking object detection algorithms
and comparing their relative performances. Several methods
of 2D object detection were outlined.

A traditional sliding window algorithm for object localization
was described. It systematically moves a fixed-size window
across an image and analyzes the content within each
window to determine the presence of an object of interest.

Compared to a brute-force exhaustive search, the
branch-and-bound scheme-based efficient subwindow search
is an optimization technique to efficiently search through a
large set of potential sub-images to find the optimal location
of an object within an image, thereby significantly reducing
the computational cost.

A deep learning model that identifies objects within an image
was discussed. Referred to as the region-based convolutional
neural network (R-CNN), it generates potential regions of
interest in the image and then extracts features from those
regions using a convolutional neural network. Its
successively enhanced variations are fast R-CNN, Faster
R-CNN, and Mask R-CNN.

The unsupervised object discovery and its localization were
explained, followed by object detection by self-supervised
feature learning.

Images, video and vision; signal, image and video processing;
computer vision, machine vision, pattern recognition, robot
vision, image classification, K-means clustering, ISODATA,
SVM algorithm, the ImageNet 2012 challenge, deep learning
models for image classification, AlexNet, the visual
geometry group-16 architecture, very deep CNNs, neural
architecture search, progressive neural architecture search

We continue our discussion of robot vision in Chapter 7, highlighting some of the
unique and unexpected challenges that robots face regarding vision. These exclusive
problems arise out of the blue during a field operation and must be solved skillfully.
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7 Robot Vision

Exclusive Challenges
Faced by Robots

7.1 INTRODUCTION

Robot vision encounters several embarrassing and awkward situations during the
robot’s operation in practical settings in the real-world context. Robots experi-
ence difficulties and struggle to distinguish objects from complex backgrounds.
Identifying and tracking moving objects in dynamic environments, too, is a fiddly
issue. Therefore, the handling of variations in lighting and texture is necessary
because they impact the quality of the acquired images. Adaptation of robots to
occlusions and clutter is not easy. On numerous occasions, it is necessary to inter-
pret 3D geometry from 2D images. To further exacerbate matters, all this must be
done fast enough to ensure real-time performance in demanding scenarios. Robots
must attain the ability to accurately perceive and react to a constantly changing,
often messy, and sometimes ambiguous visual world. Humans often navigate intui-
tively in these cases. A few such bothering situations are mentioned in the subsec-
tions below, along with possible remedial suggestions (van Eden and Rosman 2019;
Owen-Hill 2025).

7.2 MISCONSTRUED CIRCUMSTANCES IN ROBOT VISION

Several occasions arise when there are chances of misinterpretation of images
(Figure 7.1). Misinterpretation of practical situations by a robot occurs owing to
errors induced from various sources, including errors from robot’s inaccurate posi-
tion or orientation, errors from the effects of robot’s motion on the collected data,
errors from environmental effects on the collected data, and errors from blockage of
the object robot’s field of view.

7.2.1 Lack oF KNOWLEDGE ABOUT THE PRECISE POSITION

OR ORIENTATION OF THE RoBoT
This occurs because the data is acquired during the robot’s use by a sensor in motion,
rather than by a fixed and stationary, vibration-free camera at a particular location, as

was done during its training. Therefore, the conditions of the robot’s training differ from
those during its field operation. This difference may sometimes cause intolerant errors.
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FIGURE 7.1 Confusing situations likely to be misinterpreted by robots.

7.2.2 INFLUENCE OF MoTION OF THE RoBOT ON THE COLLECTED DATA

The images captured by the sensor of a mobile robot are vulnerable to motion-induced
blurring. Further, as the robot is continuously moving around the space under exami-
nation, the scales or orientations at which the objects are seen may not match with
those at which the robot was trained (Nertinger et al. 2023).

7.2.3  INFLUENCE OF ENVIRONMENTAL PARAMETERS ON THE COLLECTED DATA

It is not necessary that the lighting conditions during the robot’s field application are
exactly identical to those that were employed during its training. The sensors of the
robot are prone to errors arising from the variations in lighting conditions during the
robot’s training and its use in new situations.

7.2.4 OccLusioN AND NON-VISIBILITY OF OBJECTS OF INTEREST

During the course of its motion, the robot may often find itself in a location where it
is positioned in such a manner that the object of interest is not within its field of view.
It may be blocked by intervening structures obstructing the view. These issues intro-
duce serious complexities in the detection and localization of the object (Yoshioka
et al. 2021).

7.3 MEETING THE CHALLENGES TO ROBOT VISION

The problems are solved by robots using various techniques (Figure 7.2). Methods
for the mitigation of errors to meet challenges to robot vision are: active computer
vision, anomaly detection, image-of-interest detection, semantic vision, visual place



116 Al Robotics

FIGURE 7.2 Robots overcoming the difficulties encountered in vision.

recognition, simultaneous localization and mapping (SLAM), vision-based scene
understanding, and 3D Object detection, which are discussed in the subsections
hereunder.

7.3.1  Active COMPUTER VISION

In the traditional passive computer vision, the robot’s sensor seizes the entire scene
and tries to extract useful information from the scene. The active computer vision
approach is formulated around the interaction of the sensor with the environment
(Yuille and Blake 1992; Zeng et al. 2020). Through this interaction, the robot can
understand the environment in an effective and efficient fashion. During the robot’s
movement, the sensory data recorded by the camera vision are analyzed decisively
while selectively rejecting irrelevant information. Utilizing this information, the
viewpoint of the camera sensor is manipulated in order to make adjustments for
proper investigation of the environment. These adjustments make it possible for the
robot to obtain the necessary information that it wants to deal with the instanta-
neous issues it encounters. Active vision solves the problem of object occlusion by
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overcoming the limitations of the field of view. Additionally, difficulties caused by
poor resolution of the camera are also overcome.

A crucial part of active vision is the planned sensing of perceptions from the
environment. Sensor planning involves the determination of the pose and settings of
the vision sensors of the robot to execute a task. It requires a multiplicity of views of
the object to be handled (Chen et al. 2011). Thus, active vision bequeaths the robots
with intelligent information-gathering capability by controlling the motion of their
information-collecting visual sensors.

7.3.2 ANOMALY DETECTION

The adoption of anomaly detection techniques greatly enhances the robustness and
reliability of robots. An anomaly is a spatial, temporal, or spatio-temporal depar-
ture from the anticipated behavior and performance of a robot. The anticipated
behavior and performance are defined in terms of the sequence of operational states,
and the form and mode of the robot’s interaction with its environment (Kim et al.
2022; Nandakumar et al. 2024). Anomalies of minor or major nature originate from
unforeseen impediments or variations in the environment. They also arise from sen-
sor/actuator failures. Anomalies are detected by model- and data-driven methods.

7.3.2.1 Model-Based Methods

Models are constructed based on advanced knowledge of a robot’s dynamic behavior.
Any deviation from the modeled behavior is an indicator of an anomaly (Xinjilefu
et al. 2015). Model predictive control (MPC) applies a model of the system for the
prediction of its future behavior (Saputra et al. 2021). A comparison of the observed
robot’s behavior with the predicted behavior helps in recognizing anomalies. Then,
remedial actions are taken in real time. Kalman or particle filters are used to deter-
mine the internal state of a robotic system from practical measurements supplemented
by a model of the system. Anomalies are identified by comparing the determined
state with the actual state. Necessary corrections are made (Amoozgar et al. 2013).

7.3.2.2 Data-Based Methods

A method is described for the detection of an anomalous face (Bhattad et al. 2018).
In this method, a feature vector is constructed that has unfailingly large entries for
anomalous images. Unsupervised learning is used for scoring an image based on this
feature. A peeking behavior in an autoencoder defeats obvious constructions.

The feature construction eliminates rectangular patches from an image. It gives
a prediction about the probable content of the patch conditioned on the remainder of
the image. A specially trained autoencoder is used for the prediction. The result of
the prediction is compared with the image. When the score is high, it is surmised that
the autoencoder faced difficulty in making a prediction. Likelihood of an anomaly
is therefore implied.

The autoencoder is a neural network. It works by compression of the input data
into its vital features. The input data compression is followed by reconstruction of the
initial input from the compacted depiction. The compression is called encoding, and
reconstruction is termed decoding. Latent variables in input data are discovered by
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training the autoencoder using unsupervised learning. The hidden or random vari-
ables inform us about the manner of distribution of data (Bergman and Stryker 2023).

7.3.3  IMAGE-OF-INTEREST DETECTION

Robots produce a voluminous quantity of images of the environment. Examination
of this huge amount of information is a time-consuming and labor-intensive process.
This wastage of time is easily avoidable by evolving a mechanism by which the infor-
mation is arranged and ranked in accordance with its usefulness or likely interest to
the user. This mechanism automatically flags the information of interest to quicken
the image analysis. The interest aspect is directly included in a method developed
to remedy this situation (Burke 2017). In this method, random pairs of images are
presented to a human operator. The presentation is used for the selection of images
of interest to the application being run. A Gaussian process smoother dramatically
decreases the number of comparisons than those required in standard probabilistic
algorithms. This is achieved by utilizing the resemblances between features of images
extracted by a convolutional neural network (CNN) that has been previously trained.

In another approach, histogram features are extracted from saliency maps, which
highlight the pixels or regions of an input image that contribute most to the mod-
el’s prediction. These features are applied to determine the existence of interesting
objects in images (Scharfenberger et al. 2013).

7.3.4 SEMANTIC VISION

Semantics is the study of the meaning of data. Semantic vision involves understand-
ing the objects found in an image. Their spatial and functional interrelationships
are examined (Sevilla-Lara et al. 2016). Semantics analyses objects with respect to
the layout and 3D structure of the scene. It works by segmentation of an image into
regions of interest. Classification of each pixel in a segment is done, and it is assigned
to one of several classes, e.g., a car, a road, a tree, and sky. Traffic scene understand-
ing is provided by semantic vision. This understanding is essential for a self-driven
autonomous vehicle (Geiger et al. 2014).

7.3.5 VisuaL PLACE RECOGNITION

Place recognition is the process of accurately spotting the location of a given query
image. The spotting is done from the locations of images of the same place in an
extensive geotagged database (Zeng et al. 2018). Weather conditions and illumina-
tion alter the appearance of the image of a particular place appreciably. So, they pose
hurdles in this process. Therefore, changes in appearance within the environment
must be taken into account. The accounting is obligatory, and must be done either
explicitly or implicitly in place recognition solutions to prevent chances of failure
(Lowry et al. 2016).

A traditional method of place recognition is distinctive invariant feature extrac-
tion on a scale-invariant basis. The Scale-Invariant Feature Transformation (SIFT)
algorithm described in the next section is widely used for extracting distinctive
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invariant features. Of late, CNNs have become the predominant image representa-
tion extractors.

7.3.5.1 Scale-Invariant Feature Transformation

Individual features are matched to a database of features of known objects (Lowe
2004; Guo et al. 2018). A fast nearest-neighbor algorithm is used. It is a method
of determining the closest point to a specified point in a set. A Hough transform is
applied for the identification of clusters pertinent to a single object. The Hough trans-
form is a technique for the detection of shapes, such as lines and circles in an image
by converting them into mathematical representations. It makes recognition easier,
even for obscured or broken shapes. Verification is performed through a least-squares
solution, which solves the equation Ax=» as closely as possible, minimizing the
error. The features are invariant to the scale of the image and its rotation. The match-
ing is robust across variations in illumination, 3D viewpoint, and distortion.

7.3.5.2 CNN-Based Approach
This approach is explained in Sections 5.3.1.7-5.3.1.9.

7.3.6  SIMULTANEOUS LOCALIZATION AND MAPPING

The SLAM algorithm is a method which concurrently and recursively performs two
real-time operations (Durrant-Whyte and Bailey 2006; Bailey and Durrant-Whyte
2006; Khairuddin et al. 2015):

a. Determining the location of the robot’s camera within the test environment.
b. Updating the map of the environment.

It assists the robot in understanding the place at which it is located in the environ-
ment in relation to the structure of the environment, e.g., it helps an autonomous
vehicle to map out the environment and pinpoint its location in that map.

Let us see how SLAM improves the functionality of a home vacuum cleaner robot.
The SLAM uses the onboard camera and other sensors to create a map of the cleaning
area. This map illustrates the potential obstacles that the robot may encounter during its
movement. The map guides the robot’s motion and prevents it from cleaning the same
area twice. By localizing itself, the robot estimates the amount of motion required to
move from its current position to a nearby location. The estimation is performed using
camera sensor data and information on the number of wheel movements. On the other
hand, a robot without an SLAM facility will wander randomly through the room. It
will clean certain areas multiple times, while leaving other areas unclean. It will con-
sume a lot of power, thereby excessively draining the battery (MathWorks 2024).

7.3.7 ViSION-BASED SCENE UNDERSTANDING

For the execution of grasping and manipulation jobs, a robot is required to compute
grasps for a large number of objects in dynamic and cluttered environments. These
can arise from a change in the workplace of the robot, noise effects, or inaccuracies



120 Al Robotics

in control. Modified forms of CNN architectures necessitate exact camera calibra-
tion and accurate robot control. They take disproportionately long computation times
even in static conditions, leading to their infrequent use.

A real-time, object-independent grasp synthesis method is developed for
closed-loop grasping (Morrison et al. 2018). Depth images of the region around the
object to be grasped are recorded by a camera sensor mounted on a robot’s wrist. A
generative grasping convolutional neural network (GG-CNN) is applied. It produces
antipodal graphs.

In generative A, CNNs are utilized within generative adversarial neural networks
(GANSs) to produce and discern visual content. CNNs are engaged in determining
whether a picture contains a certain object. This is a recognition task. GANS strive to
make a picture of the same object. This is a generation task. Both networks are con-
structing a representation of a distinctive picture of the object. The term ‘antipodes’
refers to diametrically opposite points on a body.

The grasps are parameterized in terms of quality of grasp, angle, and gripper
width for each and every pixel in the image. This step usually takes a fraction of a
second to complete. After computation of the best grasp, a velocity command is sent
to the robot. The system works by closed-loop control. Therefore, dynamic objects
are graspable. Errors in control can also be corrected.

For proactive planning and action, the robot should holistically perceive the infor-
mation of a workplace. For a holistic understanding of a scene based on vision, the
cognition of objects, humans, and the environment is taken into consideration along
with visual reasoning. Thus, the visual information is compiled into semantic knowl-
edge. This compilation enables a robot’s collaboration with humans in making deci-
sions (Fan et al. 2022).

7.3.8 3D Osject DETECTION

7.3.8.1 Point Clouds, Depth Maps, and Stereo Images

We collect data points in a 2D space represented by an (X, Y) coordinate system to
draw the 2D image of an object. Likewise, we can collect data points in 3D space
represented by the (X, Y, Z) coordinate system to sketch the 3D shape of an object.
A collection of data points for drawing the 3D shape of an object in a 3D (X, Y, Z)
system of coordinates is referred to as a point cloud. Each point in a point cloud is
characterized by a set of (x, y, z) coordinates. Point clouds are used for mapping fea-
tures such as buildings, infrastructure, terrains, and roads (Zheng et al. 2023). A 3D
scanner or a LIDAR is employed for the creation of point clouds. LIDAR is an active
remote sensing device. It emits laser pulses. The reflected pulses from an object are
captured. The time of flight is measured. Then the formula calculates the distance of
the point on the object from itself

Distance of the reflecting point on the object
Speed of the light
=| xTime taken by lincident light to reach the point plus /2

the time taken by reflected light from the point to return to the laser )
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Finally, it converts the distance traveled into elevation. Photogrammetry software is
a computer program that takes multiple overlapping photographs of an object from
different angles. The patterns of electromagnetic radiant pictures are analyzed to
produce a 3D model of the object.

A depth map is an image formed by real or integral values that are measured with
respect to the viewpoint. A pair of images of an object taken from different perspec-
tives constitutes a stereo image (Héne et al. 2011).

7.3.8.2 The 2D vs. 3D Object Detection

In 2D object detection, the images are annotated by drawing boxes around the objects
in them and labeling them. Using the annotated images as input data, a 2D object
detection model is trained for the recognition and localization of objects in these
images through patterns and features. After training, the model is applied to new
images for object detection by inference.

In 3D object detection, annotations include the depth or distance from the camera
as an additional parameter. A 3D object detection model is trained with the annotated
data. The new 3D object data is exposed to the trained model to draw inferences
about 3D objects.

The input data for 2D object detection are red-green-blue (RGB) images, whereas
the same for 3D object detection are RGB images, point clouds, depth maps, and
stereo images.

Annotation for 2D object detection is relatively simple in nature, involving 2D
bounding boxes, while the annotation for 3D object detection is intricate, entailing
3D bounding boxes.

Models used for 2D object detection are: YOLO (You Look Only Once) and SSD
(Single-Shot MultiBox Detector). YOLO uses a single CNN to split an image into
grids. It enables the prediction of bounding boxes and class probabilities or con-
fidence scores. It processes images at 45 frames™ while its smaller version, Fast
YOLO, does so at 155 frames™' (Redmon et al. 2016).

SSD is a neural network model. It works by discretizing the output space of
bounding boxes into a group of default boxes. These boxes range over dissimilar
aspect ratios and scales for feature map locations. The SSD is easily trained with a
smaller number of images to yield more accurate predictions than other single-stage
methods (Liu et al. 2016).

Indoor robotics needs reliable 3D object detection. For exploiting RGB-D imagery
to perform 3D object detection, the objects in the world are represented in terms of
3D cuboids. This is done by extending the automatic object segmentation using the
constrained parametric min-cuts (CPMC) framework to 3D. The CPMC is a frame-
work for generating and ranking conceivable hypotheses regarding the spatial extent
of objects in images (Carreira and Sminchisescu 2012).

The physical and statistical interactions between the objects and the environment
are modeled along with interactions between objects. On the basis of this model-
ing, an integrated framework is proposed to detect and recognize 3D cuboids in
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indoor scenes. Experiments demonstrate that the approach gives an effective com-
bination of segmentation features and geometrical properties apart from contextual
relations between objects (Lin et al. 2013).

A model for 3D object detection is the PointNet. It is a unified, effective, and effi-
cient architecture for classification of objects, part segmentation, or semantic parsing
of a scene (Charles et al. 2017). The architecture takes the point cloud as input. For
object detection, the point cloud consists of samples from the shape of the object. For
semantic parsing, the input is a single object or a small part of a scene.

PIXOR (ORiented 3D object detection from PIXel-wise neural network predic-
tions) is an accurate, single-stage, real-time 3D object detector. It operates on 3D
point clouds by representing the scene from the Bird’s Eye View (BEV) for 3D object
localization in applications like autonomous driving (Yang et al. 2018).

2D object detection is computationally less demanding, while 3D object detection
is highly computationally intensive.

2D object detection offers sufficient accuracy for surveillance and basic aug-
mented reality applications. 3D object detection is imperative where spatial context
is indispensable, e.g., in self-driving cars. It yields deeper insights into a situation
than its 2D counterpart.

7.4 DISCUSSION AND CONCLUSIONS

This chapter presented glimpses of situations in which robot vision suffers from
practical limitations. When the background in an image is cluttered or has similar
colors and patterns, differentiating an object from its surrounding environment is
liable to errors. Changes in lighting conditions like shadows, glare, and different
intensities significantly affect the interpretation of images. Identification and inter-
pretation of objects partially hidden behind other objects is a confounding process.
Another bottleneck arises during the reconstruction of 3D information about an
object’s shape and spatial relationships from 2D camera images, with limited view-
points. Analysis of visual data fast enough to enable immediate robot responses in
dynamic situations leaves them in a quandary. Sophisticated algorithms are nec-
essary to account for relative motion for tracking objects in motion. The issue is
aggravated, particularly when the robot is also in motion. Table 7.1 provides a
quick look back at this chapter.

After a thorough exposure to robot vision in the preceding chapters, we now
probe into the ways of building emotional intelligence in robots. Emotional intel-
ligence allows robots to understand and respond to human emotions in a better
way. Through emotional intelligence, more natural and effective robot-human
interactions are rendered feasible. Applications like healthcare, education, and
customer service greatly benefit from fostering trust. The overall user experience
is improved with the utilization of emotional robots. The next chapter is concerned
with making robots more relatable and helpful to humans. The robots behave cor-
dially by recognizing emotional cues like facial expressions and tone of voice of
their human colleagues.



TABLE 7.1

A Quick Retrospection of This Chapter

SI. No. Takeaway

1 Summary

2 Active vision

3 Anomaly
detection

4 Image-of-interest
detection

5 Semantic vision

6 Visual place
recognition

7 SLAM

8 Vision-based
scene
understanding

9 3D object
detection

10 Keywords and
ideas to
remember

Explanation

Possible situations in which the robots are likely to make vision-related misjudgments were discussed, e.g., when there is a lack of knowledge
about the precise position or orientation of the robot, the collected data is influenced by the motion of the robot or affected by environmental
parameters or when the object of interest is occluded and not visible due to obstruction. Several techniques have been developed to address
the challenges of robot vision. After all these methods were explained, a comparison was made between 2D and 3D object detection.

In active vision, the robot can move its sensors to gather more useful information about its surroundings. The use of model- and data-based
methods for anomaly detection was explained.

Anomalies in the kinematic or dynamic behavior of a robot are detected by comparing its observed motion with the expected motion. The use
of model- and data-based methods for anomaly detection was explained.

During the examination of the vast amount of data, image-of-interest detection is employed as a time-saving measure, where visual
representations are provided with specific regions, such as corners and edges, highlighted.

In semantic vision, the relationships between objects in an image are understood.

Visual place recognition gives the robot the ability to recognize a place from its visual features, such as color and shape. Scale-invariant
feature transformation is an algorithm that detects, describes, and matches local features in images. A convolutional neural network-based
approach is also useful for this purpose.

Simultaneous localization and mapping (SLAM) constitutes a technology that helps robots build maps of their environments and use these
maps to navigate while keeping track of their locations.

It analyzes visual data to interpret and derive meaningful information about a scene, e.g., the objects, their relationships, spatial layout, and
context.

Point clouds (3D representation of a scene with each point representing a specific location in space), depth maps (2D image with each pixel
representing the distance of the corresponding point in the scene from the camera), and stereo vision (using two cameras for depth
information) are the strategies adopted to help the robot in 3D object detection.

Uncertainty about the precise position or orientation of the robot, influence of motion of the robot and environmental parameters on the
collected data, occlusion of objects of interest, active computer vision, anomaly detection, model- and data-based methods, image-of-interest
detection, semantic vision, visual place recognition, scale-invariant feature transformation, convolutional neural networks-based approach,
simultaneous localization and mapping, vision-based scene understanding, 3D object detection, point clouds, depth maps, and stereo images.

s30qoy Aq paoe4 saduajjeyD dAISN|IX] :UOISIA JOQOY

€Tl



124 Al Robotics

REFERENCES AND FURTHER READING

Amoozgar M. H., A. Chamseddine and Y. Zhang. 2013. Experimental test of a two-stage
Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor heli-
copter. Journal of Intelligent and Robotic Systems, Vol. 70, pp. 107-117.

Bailey T. and H. Durrant-Whyte. 2006. Simultaneous localization and mapping (SLAM): Part
1L, IEEE Robotics & Automation Magazine, Vol. 13, 3, pp. 108-117.

Bergmann D. and C. Stryker. 2023. What is an autoencoder? https://www.ibm.com/topics/
autoencoder

Bhattad A., J. Rock and D. A. Forsyth. 2018. Detecting anomalous faces with ‘no peeking’
autoencoders, ArXiv:1802.05798, https://doi.org/10.48550/arXiv.1802.05798

Burke M. 2017. User-driven mobile robot storyboarding: Learning image interest and saliency
from pairwise image comparisons, eprint arXiv:1706.05850, 8 pages.

Carreira J. and C. Sminchisescu. 2012. CPMC: Automatic object segmentation using con-
strained parametric min-cuts, /[EEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 34, 7, pp. 1312-1328.

Charles R., H. Su, M. Kaichun and L. Guibas. 2017. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation, 2017 IEEE Conference on Computer Vision and
Fattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July, pp. 77-85.

Chen S., Y. Li and N. M. Cwok. 2011. Active vision in robotic systems: A survey of recent
developments, International Journal of Robotic Research, Vol. 30, 11, pp. 1343-1377.

Durrant-Whyte H. and T. Bailey. 2006. Simultaneous localization and mapping: Part I, IEEE
Robotics & Automation Magazine, Vol. 13, 2, pp. 99-110.

Fan J., P. Zheng and S. Li. 2022. Vision-based holistic scene understanding towards proactive
human-robot collaboration, Robotics and Computer-Integrated Manufacturing, Vol. 75,
p. 102304.

Geiger A., M. Lauer, C. Wojek, C. Stiller and R. Urtasun. 2014. 3D traffic scene understand-
ing from movable platforms, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 36, 5, pp. 1012-1025.

Guo F, J. Yang, Y. Chen and B. Yao. 2018. Research on Image Detection and Matching
Based on SIFT Features, 2018 3rd International Conference on Control and Robotics
Engineering (ICCRE), Nagoya, Japan, 20-23 April, pp. 130-134.

Hine C., C. Zach, J. Lim, A. Ranganathan and M. Pollefeys. 2011. Stereo Depth Map Fusion
for Robot Navigation, 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, USA, 25-30 September, pp. 1618-1625.

Khairuddin A. R., M. S. Talib and H. Haron. 2015. Review on Simultaneous Localization and
Mapping (SLAM), 2015 IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), Penang, Malaysia, 27-29 November, pp. 85-90.

Kim H. S., L. J. Park, H. Han and J. Y. Son. 2022. Anomaly Detection for Robotic Assembly,
2022 13th International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Korea, Republic of, 19-21 October, pp. 1667-1670.

Lin D., S. Fidler and R. Urtasun. 2013. Holistic Scene Understanding for 3D Object Detection
with RGBD Cameras, 2013 IEEE International Conference on Computer Vision,
Sydney, NSW, Australia, 1-8 December, pp. 1417-1424.

Liu W, D. Anguelov, D. Erhan and C. Szegedy. 2016. SSD: Single Shot MultiBox Detector.
In: Leibe B., J. Matas, N. Sebe and M. Welling (Eds.), Computer Vision — ECCV
2016. Lecture Notes in Computer Science (LNCS), Vol. 9905, Springer International
Publishing AG, Cham, pp. 21-37.

Lowe D. G. 2004. Distinctive image features from scale-invariant keypoints, International
Journal of Computer Vision, Vol. 60, pp. 91-110.

Lowry S., N. Siinderhauf, P. Newman, J. J. Leonard, D. Cox and P. Corke. 2016. Visual place
recognition: A survey, /EEE Transactions on Robotics, Vol. 32, 1, pp. 1-19.


https://www.ibm.com/topics/autoencoder
https://www.ibm.com/topics/autoencoder
https://doi.org/10.48550/arXiv.1802.05798

Robot Vision: Exclusive Challenges Faced by Robots 125

MathWorks. 2024. What Is SLAM? How It Works, Types of SLAM Algorithms, and Getting
Started, (1994-2024), The MathWorks, Inc., https://ch.mathworks.com/discovery/slam.
html

Morrison D., P. Corke and J. Leitner. 2018. Closing the loop for robotic grasping: A real-time,
generative grasp synthesis approach, arXiv:1804.05172v2, 10 pages.

Nandakumar S. C., D. Mitchell, M. S. Erden, D. Flynn and T. Lim. 2024. Anomaly detection
methods in autonomous robotic missions, Sensors, Vol. 24, 4, p. 1330.

Nertinger S., R. J. Kirschner, S. Abdolshah, A. Naceri and S. Haddadin. 2023. Influence of
Robot Motion and Human Factors on Users’ Perceived Safety in HRI, 2023 IEEE
International Conference on Advanced Robotics and Its Social Impacts (ARSO), Berlin,
Germany, 5-7 June, pp. 46-52.

Owen-Hill A. (Updated). 2025. Top 10 challenges for robot vision, https://blog.robotiq.com/
top-10-challenges-for-robot-vision

Redmon J., S. Divvala, R. Girshick and A. Farhadi. 2016. You Only Look Once: Unified,
Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27-30 June, pp. 779-788.

Saputra R. P., N. Rakicevic, D. Chappell, K. Wang and P. Kormushev. 2021. Hierarchical
decomposed-objective model predictive control for autonomous casualty extraction,
IEEE Access, Vol. 9, pp. 39656-39679.

Scharfenberger C., S. L. Waslander, J. S. Zelek and D. A. Clausi. 2013. Existence Detection
of Objects in Images for Robot Vision Using Saliency Histogram Features, 2013
International Conference on Computer and Robot Vision, Regina, SK, Canada, 28-31
May, pp. 75-82.

Sevilla-Lara L., D. Sun, V. Jampani and M. J. Black. 2016. Optical Flow with Semantic
Segmentation and Localized Layers, 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June, pp. 3889-3898.

van Eden B. and B. Rosman. 2019. An Overview of Robot Vision, 2019 Southern African
Universities Power Engineering Conference/Robotics and Mechatronics/Pattern
Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Bloemfontein,
South Africa, 28-30 January, pp. 98—-104.

Xinjilefu X., S. Feng and C. G. Atkeson. 2015. Center of Mass Estimator for Humanoids
and Its Application in Modelling Error Compensation, Fall Detection and Prevention,
Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), Seoul, Republic of Korea, 3-5 November, pp. 67-73.

Yang B., W. Luo and R. Urtasun. 2018. PIXOR: Real-Time 3D Object Detection from Point
Clouds, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18-23 June, pp. 7652-7660.

Yoshioka K., H. Okuni, T. T. Ta and A. Sai. 2021. Through the Looking Glass: Diminishing
Occlusions in Robot Vision Systems with Mirror Reflections, 2021/ IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech
Republic, 27 September to 1 October, pp. 1578-1584.

Yuille A. L. and A. Blake (Eds.). 1992. Active Vision, MIT Press, Spain, 368 pages.

Zeng R., Y. Wen, W. Zhao and Y.-J. Liu. 2020. View planning in robot active vision: A survey
of systems, algorithms, and applications, Computational Visual Media, 6, pp. 225-245.

Zeng Z., J. Zhang, X. Wang, Y. Chen and C. Zhu. 2018. Place recognition: An overview of
vision perspective, Applied Sciences, Vol. 8, 11, pp. 2257.

Zheng S., Y. Li, Z. Yu, S.-Y. Cao, M. Wang, J. Xu, R. Ai, W. Gu, L. Luo and H.-L. Shen. 2023.
I2P-Rec: Recognizing Images on Large-Scale Point Cloud Maps through Bird’s
Eye View Projections, 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Detroit, MI, USA, 1-5 October, pp. 1395-1400.


https://ch.mathworks.com/discovery/slam.html
https://ch.mathworks.com/discovery/slam.html
https://blog.robotiq.com/top-10-challenges-for-robot-vision
https://blog.robotiq.com/top-10-challenges-for-robot-vision

Emotionally
Intelligent Robots

Bayesian Inference
and Fuzzy Logic

8.1 INTRODUCTION

Emotions are psychological states connecting human thoughts, behaviors, and bodily
reactions. They are triggered by events which a person perceives as important to his/
her well-being. In fact, they are complex neurophysiological behaviors rooted in the
amygdala, hippocampus, and prefrontal cortex of the human brain. Conceptualized
as experiences, evaluations, and motivations, they consist of three fundamental
components:

i. Experiential Component: It is the subjective, personal feeling or awareness
of the emotion, such as happiness, sadness, anger, or fear.
ii. Behavioral Component: It is the outward manifestation of emotion, such as
through facial expressions, body language, or actions.
iii. Physiological Component: It includes the increased heart rate, sweating, or
changes in breathing associated with emotional feelings.

Emotional intelligence deals with understanding, utilizing, and managing emotions.
It is made possible by thoughts and feelings, enabling the perception and manage-
ment of human emotions. It concerns the observation and interpretation of the emo-
tions of friends, colleagues, and other people. Accordingly, it allows one to respond
and react to those feelings in a manner of reciprocity, returning the favor of some-
one’s act of kindness with an equivalent action. As a result, various individuals in
a society engage in emotional exchanges. Besides the accomplishment of effective
person-to-person communication, strong interpersonal relationships are built among
people.

Also called affective robots, the emotional robots can spontaneously interact with
humans in a more natural way (Spezialetti et al. 2020; Khare et al. 2024). They
recognize human emotions through facial expressions, tone of voice, and body lan-
guage, including gestures of human beings. Based on the detected emotions, they
adjust their behavior and responses for performing everyday jobs and professional
roles.

Social robots are robots built to directly engage and communicate with people
while adhering to established social conventions (Bryant 2019). These robots help
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kids with autism. They assist the elderly by interacting with them fervently in a warm
and engaging manner, using both verbal and nonverbal communication. They are
applied in the diagnosis of autism spectrum disorder, a neurological and develop-
mental disorder impacting an individual’s interaction and socialization with others
(Arrent et al. 2022). Table 8.1 brings out the special attributes and traits that tell apart
an emotional robot from a regular robot (Kolling et al. 2016).

This chapter reviews the advancements in the field of robotics that replicate the
emotional behavior of humans to work in a friendly and hospitable fashion bringing
an emotive aroma to the environment. They differ from conventional robots, display-
ing a monotonous and heartless machine-like behavior. Although emotional robots
are very welcoming and lovable, a word of caution from such robots is given by the
following poem:

SAFEGUARDING HUMAN IDENTITY!

In my dream, I was going to the market one day

When I was greeted by a person on the way

A simple man on the street

With a smiling face and walking briskly on his feet

His behavior was very pleasing,

He looked very natural and amazing, but a little surprising

TABLE 8.1
Regular Robot and Emotional Robot
Point of
SI. No.  Comparison Regular Robot Emotional Robot
1 Purpose of It aims to perform It is intended to recognize and respond to human
design specific tasks based on emotions, allowing for more nuanced and

programmed empathetic interactions between robots and
instructions. individuals.

2 Functionality It primarily focuses on It understands and reacts to human emotions,
completing tasks such as  potentially offering moral comfort or support.
cleaning, assembly, or
manufacturing.

3 Sensory It utilizes basic sensors, It is equipped with advanced sensors,

capabilities such as accelerometers sophisticated cameras, and microphones to
and proximity detectors.  detect facial expressions, tone of voice, and
body language of humans.

4 Al algorithms It mainly uses algorithms It leverages complex Al models to interpret
designed for task emotional cues and generate appropriate
execution. responses to emotions.

5 Examples A vacuum cleaner that A companion robot designed to interact with
navigates a room and elderly or sick individuals, providing
cleans the floor. conversational responses to queries, mixed with

emotional care.
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So, I asked him, “Was he a human or a robot?”

To which he replied, “A social robot”.

Imagine if it happens, it will be very confusing

With eyes watching but stubbornly refusing

To distinguish robotics from reality

In a mixed man-robot society

Therefore, ethical laws must protect human rights and dignity

To avert any danger of a human getting a mistaken robotic identity.
Or a robot posing as a human entity.

8.2 EMOTIONAL Al

Emotional artificial intelligence (AI) entails endowing a robot with the gift to exhibit
humanoid emotion (Yan et al. 2021). Emotional Al, also known as affective comput-
ing, is the process by which human emotions are imitated by computer systems (Wu
2024). This becomes possible through the analysis of gigantic amounts of data for
the identification of patterns and the prediction of the emotional states of people. The
process of emotional Al development consists of three stages involving the collection
and analysis of emotion-related data and the generation of reactionary responses to
the emotions, as shown in Figure 8.1.

Stage 1: Collection of Emotion-Related Data: The sources of these data are human
facial expressions in the form of motion and configurations of the small micromotor
muscles underneath the skin of a person’s face. The facial expressions are supple-
mented with voice intonations, namely the rise and fall of pitch in sound, to highlight
an expression. Human body language adds more flavor to emotions. There are several

FIGURE 8.1 The three stages in building emotional Al
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different physical behavior-based nonverbal communication ways in which emotions are
expressed. Eye contact, posture, gestures, handshakes, happiness, surprise, fear, anger,
sadness, and disgust are a few such expressions. No less important are the physiologi-
cal signals of emotion arousal, such as respiratory changes, changes in heart rate, blood
pressure, sweating, skin temperature, galvanic skin response, electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG), etc. All these signals contribute
toward formulating the overall pattern of emotional behavior exhibited by humans.

Stage 2: Analysis of Collected Emotion Data: Interpretation of the data is per-
formed using machine learning (ML) algorithms. These algorithms identify emo-
tional cues. These cues are the verbal or nonverbal signals. They provide indications
about how someone is feeling, thinking, or reacting to a given situation or incident.

Stage 3: Generation of Necessary Response to Input Emotion Data: Appropriate
human responses are quickly developed in answer to the interpreted emotional state.
The responses take the form of textual, speech, or visual outputs.

There are four facets to emotional Al: perception, utilization, understanding, and
management of emotions (Seyitoglu and Ivanov 2024).

8.3 EMOTIONAL ROBOT ALGORITHM

8.3.1 MAIN COMPONENTS OF THE ALGORITHM

The emotional robot algorithm is an exciting and thought-provoking idea. Figure 8.2
shows the four components of an emotional robot algorithm. The first component
is preprocessing of acquired sensory input. The second component is emotion

FIGURE 8.2 The structural constitution of an emotional robot algorithm.
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recognition. The third and fourth components are, respectively, the representation of
emotional state and the generation of an appropriate response to the detected emo-
tion. Each of these components is split up into subcomponents. These are elaborated

Al Robotics

alongside the mentioned components.

An emotional robot algorithm is a composite algorithm. It is formed by the com-
bination of several ML algorithms. This algorithm generally consists of the following

(Thilmany 2007):

i. Preprocessing of Acquired Sensory Input: The raw signals are converted
into a suitable form for analysis. The preprocessing is a complex, multifac-
eted process consisting of a series of operations:

a.

d.

Data Cleaning, Normalization, and Submission for Processing: The
data received from various sensors is cleaned by identifying sources
of noise in the signal, removing the noise and disturbances that affect
it, handling missing values, and validating data sources in the signal.
The data are normalized by eliminating repetition and redundancy.
Repeated and irrelevant portions are deleted. In addition, related mul-
tiple relationships are isolated. These measures are necessary to prepare
the data for analysis of human facial expressions, body language, and
voice tone using ML techniques, as they have a significant influence on
the results if not taken into account.

Feature Selection: The relevant features in the input sensory data that
are most indicative of emotions are identified. Optionally, emotion
detection is enhanced by measuring physiological data. Heart rate and
skin conductance measurements are vital biological parameters con-
nected with a person’s emotional feelings.

Visual Feature Extraction: Facial expressions are examined by com-
puter vision techniques. Key features like eyebrow position, lip curva-
ture, and eye gaze are identified during this examination and brought
into the limelight.

Audio Feature Extraction: The voice tone and pitch variations are pro-
cessed. These help to detect emotional cues and must be paid due attention.

ii. Emotion Recognition: ML algorithms are employed to analyze various
emotions for their accurate recognition in order that their formal response
greeting can be triggered in acknowledgment.

a.

Facial Expression Analysis: Convolutional neural networks (CNNs) are
used to identify facial features. They can classify emotions based on
patterns discerned in facial expressions.

Body Language Recognition: Body posture, gestures, and movement
patterns are scrutinized. Their scrutiny makes inference of emotional
states easier.

Voice Analysis: Speech recognition and analysis are applied to voice
pitch, intonation, and pace. Voice analysis is a valuable tool for detect-
ing emotions.

iii. Emotional State Interpretation: ML techniques are applied for performing
emotion classification and understanding.
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a. Contextual Understanding: The emotional meaning of cues behind the
detected emotions is understood and interpreted more deeply by taking
into account the current situation and its correlation with previous inter-
actions. Relating emotions to the context makes the experience livelier
and more impactful.

b. Emotional Intensity Assessment: The strength or severity of the detected
emotion is determined. This is needed to impart strength to the emo-
tions that are articulated more emphatically, and provide a debilitated
answer to feebly expressed emotions.

c. Emotion Classification and Labeling: Algorithms such as support vector
machines (SVM), neural networks, or deep learning models are trained
on large datasets of labeled emotional data to achieve fast and accurate
emotion classification. They categorize the detected emotions into basic
classes like happiness, sadness, anger, fear, and surprise. An emotional
label like ‘happy’, ‘sad’, or ‘angry’ is assigned to the recognized emo-
tional state based on the output of the model.

iv. Generating an Appropriate Response to the Detected Emotion: This is
achieved through a dual strategy of emotional expression and adaptive
behavior. It includes adjustment of the robot’s facial expressions, tone of
voice, or physical actions. These adjustments reflect empathy or understand-
ing toward the interacting human operator using ML.

a. Emotional Expression: Appropriate facial expressions, voice tone, or
body movements are chosen to convey an empathetic response that is
aligned with the user’s perceived emotion.

b. Adaptive Behavior: Adjustments are made to the robot’s actions, conver-
sation style, or responses in response to the interpreted emotional state.

8.3.2 CoNSIDERATIONS AND CONCERNS DURING ALGORITHM FORMULATION

When designing an emotional robot algorithm, one has to consider several factors to
ensure the accuracy of results and to safeguard ethics. Let us list some of these fac-
tors that come to mind immediately.

i. Cross-Cultural Variations in the Human Race: There are wide cultural dif-
ferences in facial expressions and emotional displays across various societies
of the human race (Mohan et al. 2021). As common knowledge, expressions
like smiling for happiness and crying or weeping for sorrow are believed
by consensus among people without any disagreement. Nevertheless, subtle
distinctions and gradations in intensities of these expressions differ signifi-
cantly. The differences depend on cultural norms and interpretations across
the globe. In some places, people rely more on eye movements to convey
emotions. In other localities, the focus is principally on the mouth region.
Therefore, both universal and cultural expressions can vary significantly.
Indeed, it is a well-supported argument worthy of consideration. These
variations must be considered for training emotion recognition algorithms.

ii. Provision of Built-in User Feedback Loop: Customer feedback mechanisms
must be duly incorporated. They will enable the users to provide input on
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the emotion recognition accuracy of the robotic system. The user feedback
will improve the system over time

iii. Issues of Privacy and Ethical Concerns: The privacy of emotional states of an
individual requires clear consent mechanisms and guidelines regarding data
collection and usage. Ethical considerations must be strictly adhered to when
using sensors to detect emotions. Emotions significantly influence ethical
judgments. They create situations where individuals might be exploited due to
their emotional states. There exist possibilities and potentialities that can lead
to biased decisions based on feelings like anger, fear, or sympathy instead
of rational reasoning. These issues are particularly problematic in situations
that require objective analysis. Emotional appeals may be utilized to persuade
people. These can become harmful, especially when they exploit the vulner-
abilities of people or employ deceptive tactics. Risks of this nature raise ethi-
cal worries about the intent and impact of emotional manipulation. Empathy
can promote ethical behavior by encouraging compassion and understanding
toward people. But the lack of empathy leads to harmful actions.

8.4 SPECIFIC ALGORITHMS USED IN
EMOTIONALLY INTELLIGENT ROBOTS

Considering the diversity of emotional behavior, it is evident that emotional robots
cannot function with a single algorithm, but rather with an intermixed algorithmic
technique. Figure 8.3 presents a broad view of the algorithms employed by emo-
tionally intelligent robots. Familiar emotional robot algorithms include Bayesian
inference, fuzzy logic, Markov models, self-organizing maps, SVMs, decision trees,
natural language understanding and reinforcement learning.

8.4.1 BAYESIAN INFERENCE FOR RoBOT EMOTION DETECTION

As emotions exhibit an overlapping nature, emotional states can be modeled as prob-
ability distributions, indicating a likelihood of experiencing a particular feeling in a
given situational context. Let us inquire about the probabilistic aspect of emotions. It
sounds simple, but it is easier said than done.

8.4.1.1 Building a Probabilistic Inference Perspective
of Emotion Recognition

Bayesian inference is a computational model in ML. It is widely used in image pro-
cessing and cognitive science (Kato et al. 2006; Martinez-Hernandez et al. 2016). It
looks upon the process of emotion recognition as a probabilistic inference problem.
This probabilistic problem is solved by applying Bayesian statistical methods to emo-
tions. Bayesian methods are applied toward understanding the ways in which people
experience emotions and draw inferences about them. They use Bayes’ theorem to
fit a probability model to a set of data from prior evidence. Before encountering new
information, individuals have pre-existing beliefs about emotions. These beliefs are
instinctively derived from their past experiences and cultural practices within the
respective society in which they are brought up. They act as a prior distribution of
emotions in the Bayesian framework. Figure 8.4 shows the stages in the Bayesian
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FIGURE 8.3 Common algorithms of induction of emotional response behavior in social
robots.



134 Al Robotics

FIGURE 8.4 The Bayesian inference process for robots.

inference process for emotion recognition, viz., input layer consisting of sensory data
acquisition and feature extraction, prior distribution depicted as a probability graph,
the likelihood function given as a representation of probability of observation of cur-
rent sensory data for a given emotion, the Bayesian update calculation in which the
prior belief is combined with a likelihood function using Bayes’ theorem to deter-
mine a posterior probability distribution, and the output layer as a posterior distribu-
tion displaying the probability of each possible emotion.

Individuals continuously update their beliefs about the emotional state of some-
one. This updating of beliefs is based on newly acquired sensory information. The
intent of updating is to combine prior knowledge with new data. The incorpora-
tion of prior knowledge enhances the accuracy of emotion detection in real-time
applications.

When new cues, such as facial expressions, are observed, a likelihood function is
used. It represents the probabilities of occurrence of those cues when a specific emo-
tion is given. From the perspective of Bayesian methods, the prior beliefs are com-
bined with the likelihood function using Bayes’ theorem. Doing so helps individuals
to update their beliefs about the most probable emotion. As a result, a posterior dis-
tribution of emotions is obtained. This distribution reflects the current understanding
of individuals about emotions based on the new information.

The gist of the discussion is that Bayesian inference is employed in robot emotion
detection to enable robots to interpret human emotions more accurately. The inter-
pretation is done by incorporating prior knowledge about emotional expressions into
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new data. Beliefs are updated based on new sensory data, such as facial expressions
and voice tone. The analysis provides a probabilistic assessment of the most likely
emotional state. It enables more nuanced and adaptive interactions between robots
and humans.

8.4.1.2 Applications of Bayesian Inference

How is Bayesian inference helpful in emotion detection? Bayesian inference helps
robots improve emotion detection by leveraging prior knowledge and integrating new
evidence through probability. As a result, more nuanced and context-aware emo-
tion recognition is achieved in human—robot interaction. Fascinating areas where
Bayesian inference has made progress are as follows:

i. Multimodal Integration for Emotion Recognition: A Bayesian model can
easily combine information from multiple sensory modalities like facial
expressions, voice tone, body posture, and body language. By incorporating
this information, it is able to provide a more comprehensive understanding
of emotions. Thus, it helps to build a more robust emotion detection system
(Bera et al. 2019).

a. Analysis of Facial Expression: A Bayesian model analyzes facial fea-
tures like eye gaze, brow position, and mouth curvature of a person.
The analysis of facial features is applied to infer the most likely emotion
based on a probability distribution.

b. Analysis of Voice Tone: A Bayesian model analyzes prosodic features
like pitch, volume, and speech rate of a person. The analysis of prosodic
features enables the estimation of a speaker’s emotional state.

c. Social Interaction of Robots: A Bayesian network is used to model the
emotional state of a group of persons participating in a social engage-
ment. This modeling allows a robot to respond appropriately to the
overall sentiment of the people in the group.

ii. Contextual Understanding of the Situation: A Bayesian network incorpo-
rates contextual information about the situation. This could be in the form
of a conversation topic or social cues. As a consequence, an improved emo-
tion recognition accuracy is achieved.

iii. Modeling and Handling of Uncertainty: The assessment of uncertainty
plays a crucial role in understanding the way in which people behave emo-
tionally. Particularly, it makes us aware about the ways the people navigate
abstruse situations or react to complicated emotional expressions.

We recognize that a primary aspect of Bayesian inference is its excellent
ability to quantify and manage uncertainty in emotion perception. It works by
continuously updating probability distributions as new information from sen-
sors like facial expressions, voice tone, and body language becomes available.
By naturally accounting for uncertainty in emotion detection, Bayesian infer-
ence is able to provide a probability distribution over possible emotional states
rather than a single categorical prediction. This specialty has a meaningful
impact on emotion recognition because of the ambiguous nature of this process.
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iv. Generation of Adaptive Response by Dynamic Updates: As the robot inter-
acts with a person, it continuously refines its understanding of the person’s
emotional state and probability of different emotions by updating the pos-
terior probability based on new observations, Hence, the robot dynamically
adjusts its responses to better suit the perceived emotional state of the user.
These improvements make the robot more adaptive to changing situations.

v. Learning from Interaction with Humans: A Bayesian model updates its prior
beliefs about emotion expression based on new data obtained through con-
tinuous interaction with humans. This belief-updating mechanism allows
for personalized and adaptive emotion recognition over time.

8.4.1.3 Advantages of Bayesian Inference

Let us scrutinize the resources offered by Bayesian inference that can be gainfully
utilized. In robot emotion detection, Bayesian inference offers significant advantages
in a multiplicity of ways. It allows for the dynamic updating of probabilities based on
new sensory data. It effectively handles uncertainty in complex emotional situations.
It incorporates prior knowledge about human emotions and provides a framework
to reason about the likelihood of different emotional states. Therefore, a robust and
adaptable emotion recognition is implemented in robots through Bayesian inference.
Let us enlist the key advantages of Bayesian inference in robot emotion detection.
These are as follows:

i. Probabilistic Interpretation of Results: Bayesian inference provides a clear
probabilistic interpretation of the results. It allows for a better understand-
ing of the confidence level associated with the predicted emotion.

ii. Explanatory Power of Bayesian Inference: The analysis of the posterior dis-
tribution helps developers to gain insights into the main features that are
most influential in determining the emotional state. These insights allow for
the refinement of the emotion detection model.

As an example of the application of Bayesian inference, a robot interacting with a
human might initially have a neutral prior belief about the person’s emotion. As the
robot watches the facial expressions and tone of voice of the person, it updates its
belief about the person’s emotion. It gradually shifts and leans in drawing inference
toward happy or sad situations, depending on the new evidence.

8.4.1.4 Limitations of Bayesian Inference

The inherent duality of situations suggests that where there are advantages, there are
also disadvantages. When using Bayesian inference for robot emotion detection, an
infuriating limitation arises from the difficulty of selecting appropriate prior distri-
butions. There is a chance of overfitting to the training data. Real-time applications
add computational complexity. The handling of nuanced emotions is difficult. Large,
diverse datasets are necessary to capture the full spectrum of human emotional
expressions accurately. All these quandaries hinder the accuracy and reliability of
emotion recognition in robots. A more detailed explanation of limitations will clarify
the types of technical snags and hitches.
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i. Complexity Arising from Selection of Prior Distribution: Bayesian infer-
ence relies heavily on the choice of prior distribution of probabilities of
emotions. The preceding distribution represents initial beliefs about the
data. Selecting an accurate prior distribution for complex emotions is not
easy. The reason is that emotions often overlap with each other and vary
significantly between individuals.

ii. Complexity in Model Designing: Development of a robust Bayesian model
for emotion detection is a complicated task. It requires careful design and
selection of appropriate features and prior distributions.

iii. Dependency on Extensive Datasets: Accurate emotion detection with
Bayesian inference heavily relies on the availability of large, well-annotated
datasets. These datasets must represent a wide range of emotional expres-
sions. Hence, they are difficult to acquire and maintain.

iv. Risk of Overfitting: The model might overfit to specific patterns if the train-
ing data is not sufficiently diverse. Then, poor performance is observed on
unseen data with subtle emotional nuances.

v. Computational Burden and Cost: Bayesian inference involves complex
calculations. Hence, it is computationally expensive for real-time robot
interactions. Serious issues are encountered, especially when deal-
ing with large datasets. An intricate Bayesian emotional model, too, is
troublesome.

vi. Challenges Due to Nuanced Emotional Behavior: Emotions are not dis-
cretely categorized. They would rather exist on a spectrum. These charac-
teristics of emotions make it difficult to accurately capture subtle variations
and complex emotional states within a Bayesian framework.

8.4.1.5 Potential Solutions to Limitations of Bayesian Inference

As already said, Bayesian methods involve incorporating prior beliefs. Their incorpo-
ration introduces some level of subjectivity into the analysis. It can be a double-edged
sword with positive and negative consequences. It carries inherent risks because of
the biasing of results if the prior beliefs are poorly specified. Recognizing limitations
helps us identify areas where improvement is needed, allowing us to focus our efforts
in the right direction. Strategies have evolved to overcome the different inadequacies.
A few notable ones are given below:

i. Adoption of Adaptive Prior Distributions: Adaptive prior distributions are
employed. These distributions can learn and update themselves based on
new data encountered during interaction. They can help in the mitigation of
the issue of selecting the right initial prior distribution.

ii. Formulation of Hybridized Approaches: Bayesian inference is combined
with other ML techniques. In particular, deep learning improves the accu-
racy and robustness of emotion detection.

iii. Practicing Dimensionality Reduction: Applying dimensionality reduction
techniques helps in the management of the complexity of feature space. It
reduces the computational load.
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iv. Use of Continuous Emotion Models: Models that represent emotions as con-
tinuous variables rather than discrete categories are preferable. They cap-
ture nuances in emotional expression far better than those using discrete
variables.

8.4.2 Fuzzy Locic IN Rosot EMOTION DETECTION

We have seen how Bayesian inference allows for the probabilistic updating of beliefs
based on new evidence. Rather than clinging to and brooding about a single race
course, exploring different possibilities leads to new opportunities. Another distinct
approach to emotion recognition is fuzzy logic, which deals with uncertainty and
imprecision. Its indispensability originates from the need to help robots handle vague
and imprecise information about emotions.

Fuzzy logic is a valuable tool for handling uncertainty in emotional interpreta-
tion (Hsu et al. 2013; Nicolai and Choi 2015). The foremost reason is that it allows
for the representation of emotions as degrees of truth by utilizing fuzzy rules rather
than simply distinguishing between true and false. Here, strict binary classifications
of propositions are not used. Such a representation makes fuzzy logic well-suited
to the subtleties and often vague nature of human emotions. Sometimes a person
may experience a blend of feelings at the same time or express them in a decep-
tive manner. In traditional logic, somebody is either happy or sad. Dissimilar to
traditional logic, fuzzy logic allows for partial membership of a person in multiple
emotional states. The person may be slightly happy, somewhat happy, or very happy.
A person may be in a melancholy, wistful, bittersweet, or pensive mood. Instead of
categorizing a person as absolutely happy or completely unhappy, fuzzy logic allows
robots to express the emotional state in fractional terms as partially happy (0.7) and
partially sad (0.2). This kind of expression reflects the nuanced nature of human
emotions (Cardone et al. 2023; Martin et al. 2023). Salient features of fuzzy logic
are as follows:

i. Use of Linguistic Variables: Fuzzy logic uses linguistic variables to rep-
resent emotional intensity. Variables like ‘very angry’, ‘a little surprised’,
or ‘quite disappointed’ are compatible with our natural way description of
emotions in everyday life.

ii. Definition of Fuzzy Rules: Robotic systems can interpret complex emo-
tional differences by defining fuzzy rules for relating input signals for facial
expressions or voice tone to emotional states.

iii. Handling Ambiguity: Emotional cues are often indistinguishable or incon-
sistent in real-world interactions. Fuzzy logic effectively handles such
situations.

A typical fuzzy logic rule for emotion interpretation of ‘happiness’: If the corners of
the mouth curve upward, revealing teeth, the person is feeling happy. A fuzzy model
of emotion and behavior selection for a robot is proposed (Ho et al. 1997).
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8.4.2.1 Main Steps of Fuzzy Logic

To prepare a list of steps, we brainstorm and write down every possible intermediate
stage on the way to reach the goal. The steps in fuzzy logic for emotion detection
are shown in Figure 8.5. They include the input variables from face, voice and body;
fuzzification by mapping of input variables to fuzzy sets; laying down the fuzzy rules
for combining the fuzzy input values for estimating the degrees of different emo-
tions; inference engine for application of the fuzzy rules to fuzzified input values; and
defuzzification for conversion of the calculated degrees of membership of emotions
into a single output value signifying the final emotion classification.

i. Input variables: These include the face, voice, and body indicators.

ii. Fuzzification: Input data like facial features or voice pitch are converted into
fuzzy sets e.g., ‘slightly smiling face’, ‘moderate pitch of sound’, etc. Membership
values indicate the degree to which they belong to a particular category.

iii. Definition of Fuzzy Rules: A set of rules is defined to map the fuzzy input
values to corresponding emotional states. If the facial expression is slightly
smiling and the voice pitch is moderate, then the emotion is likely ‘happy’.

iv. Inference Engine: The fuzzy logic system uses the defined rules to calculate
the degree of membership for each possible emotion based on the input data.

v. Defuzzification: The calculated membership values are converted back into
a clear emotional state, e.g., ‘happy with a confidence level of 0.8’.

8.4.2.2 Applications of Fuzzy Logic

How is fuzzy logic useful in developing emotional Al for robots? This is a ques-
tion that must be answered to clarify our expectations from fuzzy logic in this field.
In robot emotion detection, fuzzy logic is primarily used to handle the inherent

FIGURE 8.5 Stages in the application of fuzzy logic to robot emotion detection.



140 Al Robotics

ambiguity and uncertainty in interpreting human emotional cues like facial expres-
sions, tone of voice, and body language. It allows robots to identify and respond
to complex emotions more accurately. Robots accomplish this by translating vague
input into meaningful emotional states through the use of fuzzy rules and member-
ship functions.

To mention a few applications of fuzzy logic in robot emotion detection, we state
the following:

i. Analysis of Facial Expression: Fuzzy logic is used to interpret subtle facial
expressions. Examples are slightly raised eyebrows or slightly parted lips.
They are vital to identify emotions like surprise or uncertainty.

ii. Analysis of Voice Tone: Fuzzy logic is used to analyze variations in pitch,
volume, and speech rate. Determination of emotional states like anger or
sadness is done.

iii. Social Interaction of Robots: A robot dynamically adjusts its responses by
incorporating fuzzy logic. The emotional state of the user is perceived. A
more natural and engaging interaction is made.

iv. Interpretation of Vague Emotional Data: Fuzzy logic handles situations
where emotional indicators are not clear-cut. A slightly furrowed brow or a
slightly raised voice might represent a combination of emotions like confu-
sion and slight annoyance.

v. Creation of Nuanced Emotional States: Fuzzy membership functions are
used by robots to represent emotions on a spectrum. This kind of function
allows for a more nuanced understanding of emotions. The understanding
extends beyond simple ‘happy’ or ‘sad’ categories. A robot endowed with
six universal human emotions (happiness, anger, fear, sadness, disgust, and
surprise) is designed and simulated (Leu et al. 2014).

vi. Integration of Multiple Sensory Inputs: Fuzzy logic combines information
from various sensors like facial expressions, speech patterns, and body
movements. Amalgamating varied information creates a more comprehen-
sive picture of a person’s emotional state.

vii. Adaptation to Individual Differences: Fuzzy rules are adjustable based on
the context and individual user behavior. This adjustability allows robots to
interpret emotions across different individuals in a better way.

8.4.2.3 Advantages of Fuzzy Logic

In contrast to explicit logic, which relies on clear and definite statements, fuzzy logic
offers several advantages in robot emotion detection. The primary reason is its abil-
ity to handle the uncertainty and vagueness inherent in human emotions. This ability
allows for more nuanced and robust emotion recognition. Traditional binary classi-
fications fail to do so. Fuzzy logic is particularly useful for interpreting subtle facial
expressions and complex emotional states in human-robot interactions.

i. Handling of Ambiguities: Emotions are complex and often blend together.
Fuzzy logic can effectively represent these blurred boundaries between dif-
ferent emotional states. Crisp classifications require clear-cut distinctions.
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ii. Adaptability to Context: Fuzzy logic rules can incorporate contextual infor-
mation about the situation or tone of voice. Better interpretation of facial
expressions and body language is achieved. Therefore, more accurate emo-
tion detection becomes possible.

iii. Intuitive Rule-Based System: Fuzzy logic rules can be formulated using
natural language. This facility enables developers to incorporate expert
knowledge about human emotions more easily. The inclusion of such exper-
tise enables emotions to be incorporated into the decision-making process
of a robot.

iv. Robustness to Noise and Occlusion of Image: Fuzzy logic systems can toler-
ate noisy or incomplete data. Such data is common in real-world scenarios.
Frequently, sensor readings are imprecise. A fuzzy inference method is pre-
sented for emotion recognition from facial expression that can recognize
emotions from partially occluded facial images (Ilbeygi and Shah-Hosseini
2012).

v. Gradual Response to Emotional States: Unlike binary classifications, fuzzy
logic allows for a gradual transition between emotional states. The gradual
transition enables robots to respond more naturally to subtle changes in
human emotions.

vi. Integration of Fuzzy Logic with Other Techniques: Fuzzy logic can be con-
joined with other ML algorithms to enhance emotion detection accuracy. It
can be combined with deep learning for feature extraction.

An example of the application of fuzzy logic in emotion detection will make its use
clear. A robot could use fuzzy logic to interpret a slightly furrowed brow and slightly
downturned mouth by taking into account the surrounding context for a more accu-
rate emotional interpretation. This might mean a state of ‘mild sadness’, rather than
classifying it definitively as either ‘happy’ or sad’.

8.4.2.4 Limitations of Fuzzy Logic

The Human-to-Humanoid robot communication is particularly challenging (Mogos
2022). The main difficulty of fuzzy logic in emotion detection lies in accurately
capturing complex nuances of emotions. Due to our customary overdependence
on well-defined rules, there is a potential for misinterpretation when dealing with
ambiguous data. Challenges are faced in handling the context. Computational com-
plexity increases when dealing with large amounts of sensory data. These draw-
backs make it less ideal for robust emotion recognition in real-world scenarios. They
become dominant, especially when dealing with subtle or multifaceted emotions.
Some limitations of fuzzy logic in emotion detection are outlined here.

i. Oversimplification of Emotions in Fuzzy Logic Representation: Fuzzy logic
often categorizes emotions into a limited set of fuzzy states. These fuzzy
states may not adequately capture the full spectrum of human emotions.
Subtle variations and combinations may be difficult to express.

ii. Limitations of Fuzzy Rules in Context-Dependent Situations: Defining
clear fuzzy rules for emotion detection is not a piece of cake. This happens
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because human emotions are often context-dependent. They are influenced
by various factors beyond easily quantifiable data.

iii. Difficulty in Incorporation of Contextual Information: Fuzzy logic may not
effectively incorporate contextual information. This failure is crucial for
accurate emotion recognition. The same facial expression can signify dif-
ferent emotions depending on the context of the situation being considered.

iv. Dilemmas due to Ambiguity in Interpretation of Data: Fuzzy logic can
struggle to interpret ambiguous or inconsistent sensory data. The chances
of potential misinterpretation of emotions are unavoidable.

v. Requirement of a High Computational Overhead: Implementation of com-
plex fuzzy logic systems for emotion detection requires substantial compu-
tational power. As real-time data processing is more power hungry, major
issues arise with these applications.

8.4.2.5 Alternatives to Fuzzy Logic

If fuzzy logic is not useful, what are the options available? Then one can beat a retreat
and solicit intervention by:

i. Resorting to ML Models: Deep learning techniques like CNNs can learn
complex patterns from large datasets. They are capable of achieving higher
accuracy in emotion recognition.

ii. Adopting Hybrid Approaches Based on Combination of Techniques:
Combining fuzzy logic with other techniques, such as statistical analysis or
sentiment analysis, is helpful. It leverages the strengths of each method to
improve emotion detection accuracy.

8.5 DISCUSSION AND CONCLUSIONS

In order to achieve the symbiosis between humans and robots, the aspect of emotions
must be integrated into robotic systems (Loghmani et al. 2017). The importance of emo-
tional intelligence in robots deserves due appreciation for its multi-pronged benefits.

i. Enhancement of Human—Robot Interaction: Robots create a more positive and
engaging experience for users by recognizing and responding to human emo-
tions. The friendly behavior of robots makes humans feel more comfortable.
Emotionally responsive robots that can simulate empathy increase the accept-
ability of users toward them (Marcos-Pablos and Garcia-Pefialvo 2022).

ii. Improvement of Human—Robot Communication: Robots are able to inter-
pret nonverbal cues like facial expressions and tone of voice, paving the way
to more nuanced and natural communication.

iii. Delivery of Personalized Support to Users: Robots can tailor their responses
based on a user’s emotional state. Customized support and comfort for users
are provided in situations where it is needed most.

iv. Applications in Sensitive Fields: In healthcare, robots can provide emo-
tional support to patients. In education, robots can adapt teaching methods
to meet the individual needs of students.
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v. Building Trust in Users: A greater sense of trust and acceptance from users
is fostered by a robot demonstrating an ability to understand and respond to
emotions.

The crux of the discussion in this chapter centered on Bayesian inference and
fuzzy logic methods (Table 8.2). In the context of robot emotion, we deliberated on
Bayesian inference. It is a computational method that allows a robot to continuously
update its understanding of a human’s emotional state by incorporating new sensory
data like facial expressions, tone of voice, etc., with its prior beliefs about emotions.
Such robots can more accurately and dynamically interpret human emotions dur-
ing interaction. Bayesian inference employs a probabilistic approach based on prob-
ability values to represent the likelihood of different emotional states. Robots can
consider uncertainty and update their beliefs as new information becomes available.
Starting with an initial ‘prior’ belief about the human’s emotional state, the robot
continuously refines the belief based on new sensory data. Upon receipt of new data
from the human-like facial expressions, tone of voice, etc., the robot uses Bayes’ rule
to calculate the ‘posterior’ probability of each possible emotion. Thus, it effectively
updates its understanding of the human’s emotional state in real-time.

Bayesian inference allows a robot to analyze facial expressions, body language,
and speech patterns to infer a human’s emotional state. Based on the inferred human
emotion, the robot adjusts and adapts its own behavior and communication style. A
robot creates a more natural and engaging interaction with humans by demonstrat-
ing an ability to understand and respond to human emotions. It thus builds trust and
rapport with the human user.

In the context of robotics, fuzzy logic is often employed to model and simulate a
robot’s emotions. It allows for a more nuanced and human-like expression of feelings.

TABLE 8.2

Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

1 Summary Emotionally intelligent robots are able to recognize, interpret, and respond

to human emotions by utilizing machine learning, natural language
processing, and robot vision to analyze facial expressions, voice, and other
cues. The main components of an emotional robot algorithm were
outlined, highlighting the considerations and concerns that must be
accounted for during algorithm formulation. Specific algorithms used in
emotionally intelligent robots were discussed, namely Bayesian inference
and fuzzy logic.

2 Bayesian Bayesian inference provides a probabilistic perspective on emotion
inference recognition.
3 Fuzzy logic ~ Fuzzy logic is a platform to handle the ambiguous nature of human

emotional behavior by interpreting uncertain or vague information about
emotions based on a range of input stimuli.
4 Keywords and Emotional Al, emotional robot algorithm, Bayesian inference for robot
ideas to emotion detection, probabilistic inference perspective, and fuzzy logic in
remember robot emotion recognition
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This becomes possible by utilizing degrees of emotions in lieu of strict binary states.
Therefore, the robot can experience a range of emotions in response to various input
stimuli and situations. Such expressions of feelings make a robot’s responses appear
more natural and adaptable.

Unlike traditional logic with clear true/false values, fuzzy logic allows for gradual
transitions in terms of degrees of truth, meaning a robot can be ‘moderately happy’
or ‘slightly frustrated’. Fuzzy logic systems often utilize linguistic rules based on
human language, e.g., if the battery is low, then the robot feels anxious. These rules
determine emotional states based on input data like sensor readings or user inter-
actions. Factors like battery level, environmental conditions, user interactions, and
task completion status are inputs to the fuzzy logic system that influence the robot’s
emotional response. The robot’s emotional state generated by fuzzy logic can then
be translated into observable output behaviors like facial expressions, tone of voice,
or movement patterns. To give an example, when a robot assistant is tasked with
performing a complex task and encounters unexpected difficulties, fuzzy logic deter-
mines that it experiences a mix of ‘frustration’ and ‘uncertainty’. The robot will
request clarification or seek assistance from the user.

Fuzzy logic allows robots to express a wider range of emotions. It makes their
interactions with humans feel more natural, relatable, and realistic. These systems
can be easily adjusted to accommodate different situations and user preferences by
modifying the linguistic rules. They are well-suited for dealing with ambiguous or
uncertain information, which is often present in real-world interactions.

The survey of algorithms for embellishing robotics with intelligence will be con-
tinued in the next chapter, starting with hidden Markov models. Fuzzy logic and
hidden Markov models can be combined to build fuzzy hidden Markov models
(FHMMs) for emotion recognition from recognition from various modalities, such as
speech, EEG, and ECG signals enabling capturing of complex relationships between
input features and emotional states with smoother transitions between states, making
them more adaptable to real-world application.
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Emotionally
Intelligent Robots

Unlocking More
Opportunities

9.1 INTRODUCTION

Robot emotion models exhibit a wide heterogeneity and manifoldness in their
approaches to the representation and generation of emotions. These include varia-
tions in the number of emotions considered and the underlying theoretical frame-
works used in the development of the models. The triggering of emotions by external
stimuli greatly differs, and so do the methods for expressing emotions through robot
behavior (Zhao 2023). A spectrum of models exists that can adapt to context and
user interactions. In this chapter, the discussion of algorithms related to emotional
intelligence will be continued to provide readers with a deeper understanding of this
extensive field. We begin with the hidden Markov models (HMMs).

9.2 HMMs FOR ROBOT EMOTION DETECTION

A Markov model for emotions is a mathematical framework that utilizes the concept
of Markov chains. A Markov chain is a stochastic process unfolding a sequence of
events. A stochastic process is a phenomenon in which the outcome at any given
time is a random variable. It is a collection of random variables indexed by time. The
future state of a stochastic process is therefore not entirely predictable, but rather
depends on probabilities and randomness.

The Markov chains are used for the representation of dynamic changes in emo-
tional states with time. The HMMs add a layer of complexity within the model (Kulic
and Croft 2006; Inthiam et al. 2019a,b). This layer incorporates hidden states. The
hidden states allow for a more nuanced representation of emotions.

A Markov model represents affective states of robots, e.g., relaxed, stressed,
engaged, and bored. The probability of transition to a new emotional state is gov-
erned only by the current state. This characteristic property enables the modeling
of shifting and evolution of emotions within a sequence of events or interactions.
Figure 9.1 is a depiction of the components and working mechanism of the HMM in
robotics. Figure 9.1a shows the main elements of HMM as: states (discrete emotional
states represented by nodes in the diagram), transitions (arrows between states labeled
with transition probabilities), and observations (inputs such as facial expressions).
Figure 9.1b sketches the workflow of HMM. First, the facial muscle movements are
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FIGURE 9.1 Hidden Markov model for emotion recognition by robots: (a) components and
(b) workflow.

extracted. Second, the probability of transitioning from the current emotional state
to any of the possible next states is calculated using the transition matrix. Third, the
likelihood of observation of current features is ascertained. The fourth stage involves
determining the most likely sequence of emotional states that explains the observed
emotional features over time in the most effective way.

The staple component of a Markov model is the transition matrix (Christopher
2024). It defines the probability of transition from one emotional state to another. The
transition probabilities between different emotional states are indicators of the likeli-
hood of moving from one state to another in a Markov model. So, a transition matrix
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is a matrix that organizes the transition probabilities. Each entry in the transition
matrix is the probability of moving from one state to another. The transition matrix
is used to calculate the probability of occupying any state at any given time. So, the
transition matrix is a representation of the probabilities of changing between distinct
states of the robot when given its current state.

A transition diagram is a weighted directed graph. This graph represents a Markov
chain. Each vertex of the graph is a state. Each directed edge signifies a transition
probability.

9.2.1 AprPLICATIONS OF MARKOV MODELS

Markov models are used in robot emotion detection to analyze sequences of sensory
data like facial expressions, voice tone, or body language over time. They allow the
robot to deduce the underlying emotional state of a human. Changing patterns in
these observations are identified. Hence, more natural and responsive human—robot
interactions are enabled through the assistance of these models. Among the applica-
tions of Markov models in robot emotion detection, mention may be made of:

i. Analysis of Facial Expressions: The transitions between different facial expres-
sions of a person are modeled as states in a Markov chain. The modeling of
transitions allows the robot to predict the current emotional state of the person.
The prediction is based on a sequence of facial features observed over time,
notwithstanding the fact that the expressions are subtle or partially obscured.

ii. Recognition of Speech Emotion: HMMs are used to analyze the dynamic
changes in pitch, volume, and speech rate discovered in a person’s voice.
This analysis allows for the identification of the emotional tone in the per-
son’s speech.

iii. Multimodal Emotion Recognition: A Markov model combines information
from assorted heterogeneous sources such as facial expressions, voice tone,
and body language of an individual. A multi-sensor arrangement is used for
collecting information from these sources. The information is coalesced by
integrating data from various sensors like cameras and microphones. The
combined information provides an all-inclusive understanding of a person’s
emotional condition.

iv. Adaptation of Robot Behavior: When a robot detects a person’s emotion
using a Markov model, it adjusts its responses and behaviors accordingly.
The robot offers comfort if the person appears to be sad. It provides encour-
agement if the person seems to be frustrated. Thus, the robot’s response
correctly answers the person’s emotion.

v. Contextual Understanding of Emotion: Markov models are able to incor-
porate contextual information like the current situation or past interactions.
This understanding helps in the interpretation of emotional cues in a better
way. More nuanced and relevant responses are then offered by the robot.

vi. Modeling of Emotional State Transitions: The modeling enables prediction
of changes of a robot’s emotional state based on user interactions. The pre-
diction allows for generating more natural and adaptive responses.
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vii. Estimation of Emotion Intensity: The intensity of an emotion is determined
by analyzing the transition probabilities between different states within a
Markov model.

viii. Personalized Emotion Recognition: A Markov model is customized for each
user by learning the unique emotional patterns and behaviors of the con-
cerned user. Model customization provides enhanced alignment with the
user’s needs. Consequently, its performance is improved for the intended
application.

9.2.2 ADVANTAGES OF MARKOV MODELS

Markov models, particularly HMMs, offer several advantages in the detection of
robot emotions. To understand this, we must be aware of the specific areas where
HMMs can make a dent in processing emotions. They equip the robots with the abil-
ity to handle sequential data and model dynamic emotional states. Further, the robot
can infer hidden emotional states from observed behaviors. It can adapt to chang-
ing contexts, too. Hence, real-time emotion recognition in human—robot interactions
materializes. The chief advantages of using Markov models for robot emotion detec-
tion are as follows:

i. Modeling Temporal Dependencies: Unlike static classification methods,
Markov models can capture the temporal relationships between different
emotional states. The capturing of temporal relationships allows these mod-
els to understand the evolution of emotions over time. This understanding
is based on previous observations. Natural human—robot interactions are
therefore conceivable and workable.

ii. Handling Dynamic Changes in Emotions: Markov models can effectively
pick up the dynamic nature of emotions. This allows processing of expres-
sions and behaviors that change rapidly over time.

iii. Real-Time Processing of Emotions: The relatively simple structure of
Markov models allows their efficient implementation for real-time emotion
detection. So, robots using these models can respond promptly to changing
human emotions.

iv. Probabilistic Inference of Emotions: HMMs leverage probability theory.
Hence, they can provide confidence levels in emotion predictions. This capa-
bility makes them suitable for emotion recognition in ambiguous situations.

v. Inference of Hidden Emotional States: HMMs examine observable behav-
iors, such as facial expressions, voice tone, and body language, meticu-
lously. By conducting a thorough examination, they recognize hidden
emotional states, such as ‘frustration’ or ‘joy’. These states might not be
directly measurable.

vi. Adaptability to Contextual Information: Markov models incorporate con-
text information into their formalism. By adopting this strategy, they can
adjust their emotion recognition based on the current situation. Therefore,
more accurate interpretations of human emotions in different scenarios are
obtainable.
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vii. Flexibility in Feature Selection: Different features like facial expressions,
speech prosody, and body posture can be integrated into a Markov model. A
more comprehensive understanding of human emotions is thereby achievable.

viii. Computational Efficiency: Compared to more complex models, Markov
models are computationally efficient. The high efficiency allows for
real-time emotion detection on robots with limited processing power.

9.2.3 LIMITATIONS OF MARKOV MODELS

What drawbacks make Markov models inadequate for emotion modeling? Markov
models have limitations in modeling robot emotions due to their inherent lack of
long-term memory. They can only consider the current state and not the full con-
text or history of interactions. The history of interactions is necessary for accurately
representing complex human emotions. The reason is that emotions often build over
time. They depend on previous experiences. Consequently, emotion recognition and
expression in robots lack accuracy.
The limitations of Markov models in robot emotion include:

i. Restrictions of Context Awareness: Although Markov models display adapt-
ability to contextual information, they only consider the current state. They
neglect the influence of past interactions or events. The past events can sig-
nificantly impact emotional responses.

ii. Inability to Capture Nuanced Emotions: Human emotions are often com-
plex and multifaceted. They show varying intensities and subtle transi-
tions. A simple Markov model cannot accurately represent these variations
faithfully.

iii. Difficulty Faced with Long-Term Emotional Dynamics: Emotions build up
over time or change based on past experiences. Such building up of emotions
is not properly portrayed by the short-term memory of a Markov model.

iv. Oversimplification of State Transitions: Markov models often assume dis-
crete emotional states with fixed transition probabilities. These discrete
states may not accurately reflect the continuous nature of human emotions.

v. Challenges with Complex Social Interactions: In real-world scenarios,
social interactions involve multiple factors and participants. This depen-
dence of emotions on several parameters makes it difficult to model emo-
tions accurately using a simple Markov chain.

vi. Demand for Quantity and Quality of Data for Model Training: Training
a robust Markov model for emotion detection is a conscientious job. It
requires a large amount of high-quality data on human emotional expres-
sions and behaviors, ornamented with accurate emotion labels, to ensure
reliable emotion detection.

vii. Necessity of Taking Cultural Variations into Account for Model Training:
Emotional expressions vary significantly across cultures. So, the data used
for training Markov models should be representative of the target user
population, unifying intercultural, cross-cultural, multicultural, and inter-
national aspects.
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viii. Complexity of Markov Models: The Markov models are no doubt efficient
for basic emotion recognition. But complex emotional states might require
more sophisticated Markov models. Additional hidden states may be needed
in these models, making them more difficult and muddled.

ix. Associated Privacy Concerns: Privacy concerns must be properly addressed
when using facial expressions or voice analysis for emotion detection.
Obtaining prior user consent is compulsory.

9.2.4 PoOTENTIAL SOLUTIONS TO OVERCOME
THE LIMITATIONS OF MARKOV MODELS

The understanding of the limitations of HMMs prompts us to the exploration of bet-
ter alternatives that can overcome their aforementioned hurdles.

i. Recurrent Neural Networks (RNNs): RNNs can learn long-term dependen-
cies in data. This capability enables them to describe the temporal aspects
of emotions and context in a better way.

ii. Emotion Appraisal Models: These models incorporate cognitive factors.
Situational appraisal is included for understanding the underlying causes of
emotions in detail.

iii. Multimodal Input Integration: A richer picture of emotional states is sketched
by combining various sensory data. Facial expressions, speech, and body
language are combined with basic parameters in building the model.

9.3 SELF-ORGANIZING MAPS IN ROBOT EMOTION DETECTION

Let us look around eagerly for other opportunities for emotion detection. From
the HMMs, which prototype the probability of a sequence of events based on a set
of hidden states and transition probabilities between those states, we transition to
self-organizing maps (SOMs), also known as Kohonen maps. These algorithms facil-
itate dimensionality reduction and data clustering, offering a visual representation of
the data (Simplilearn 2023).

A SOM is an artificial neural network (Jitviriya and Hayashi 2014; Jitviriya et al.
2015). The SOM neural network is an unsupervised learning model. It is able to
distinguish patterns in data without any pre-labeled emotion categories. The SOM is
trained to categorize and visualize emotional states by clustering data points repre-
senting different emotions. It is used for clustering of emotional data for easy under-
standing (Figure 9.2). Figure 9.2a shows the three layers in an emotion recognition
SOM: the input layer (representing extracted facial features from an image), hidden
layer (representing potential emotional states by nodes in a 2D grid of nodes) and
output layer (displaying the final emotion classification based on the winning node in
the SOM grid). Figure 9.2b shows the six operations in an emotion recognition SOM:
feature extraction, its presentation to SOM, identifying the node in the SOM grid
with smallest distance with input feature vector as the winning node, calculating the
distance between the input feature vector and each node in the SOM grid, updating
of neighboring nodes to the winning node in the SOM grid toward the input feature
vector, and repetition of the process for many images for training.



FIGURE 9.2  Self-organizing network for emotional robot: (a) layers and (b) operations.
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The SOM effectively reduces high-dimensional emotional data displaying facial
features into a lower-dimensional space. How is this beneficial? It helps because
the relationships between different emotions are easily visualized and interpreted.
Complex emotional landscapes are explored with SOM. From an SOM, the research-
ers identify patterns and relationships between various emotional expressions. These
expressions are often based on facial features or physiological data. The topologi-
cal structure of the input space is maintained. Hence, similar emotions tend to be
mapped to nearby nodes on the SOM grid in close proximity. Topological preserva-
tion is thereby attained.

9.3.1 AvrrLICATIONS OF SOM IN EMOTION RESEARCH STUDIES

SOMs are used for recognizing facial emotion as well as physiological emotion offer-
ing a two-pronged benefit. They are also applied to investigating other indicators of
emotional states.

i. Recognition of Facial Emotion: Facial expressions divulged by images or
videos are probed to classify emotions (happiness/sadness/anger/surprise).
The facial feature points are mapped onto the SOM grid (Majumder et al.
2014).

ii. Detection of Physiological Emotion: Physiological signals, namely, heart
rate, skin conductance, or electrocardiogram data, are mapped onto the SOM
grid. Identification of related emotional states is sought from the maps.

iii. Analysis of Emotion in Text: Textual data are appraised. The sentiment or
dominant emotion within a piece of text is identified by mapping word vec-
tors onto a SOM.

iv. Investigation of Emotional Dynamics: Sequences of emotional data are
mapped onto the SOM. An analysis is performed of the mapped data. The
analysis reveals the transition and evolution of emotions over time. Thereby,
fluctuations of emotions over time, their underlying processes, and down-
stream consequences come into view and become known.

9.3.2 LimitaTiONs OF SOMSs FOrR EMOTION RECOGNITION

In what ways is the utilization of SOMs restricted? The utilization of SOMs is ham-
pered by the subjectivity of emotions, their personalization, variation from person to
person, and shaping by individual, unique experiences and interpretations of situa-
tions. The quality of data supplied too determines the veracity of results.

i. Subjectivity of Emotion: Emotions are subjective and context-dependent.
Hence, their accurate mapping onto a fixed SOM grid is fastidious.

ii. Data Quality Dependence: The accuracy of the SOM analysis is always at
the mercy of the quality of the input data. Being grabbed in their clutches,
facial expressions, physiological signals, etc., in input data play vital roles in
the emotion detection of robots.
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9.4 SUPPORT VECTOR MACHINES FOR ROBOT
EMOTION CLASSIFICATION

While SOMs reduce dimensionality to extract meaningful features, let us investi-
gate the utilization of a classifier machine learning algorithm in this matter. A sup-
port vector machine (SVM) is a machine learning algorithm (Tsai et al. 2009; Kang
2025). It is commonly used as a classifier to categorize different emotional states
from data like speech or facial expressions. The classification is done by identifying
patterns in extracted features. The identified patterns are assigned to specific emo-
tions like happiness, sadness, anger, or neutrality.

The SVM effectively distinguishes between different emotional categories based
on the input data by finding the optimal decision boundary between them. Figure 9.3
displays the main elements and workflow of a SVM for emotion recognition by a
robot. Figure 9.3a shows the principal elements of the SVM: data points (extracted
features representing the facial image), feature space (multidimensional space for
visualizing the data distribution), hyperplane (optimal separating plane subdivid-
ing the data points), support vectors (data points most proximate to the hyperplane)
and the kernel function (a mathematical function for data transformation to higher
dimensional space). Figure 9.3b shows the sequential flow of the SVM algorithm:
feature extraction, feature mapping, calculation for creating an optimal hyperplane,
and classification of a new facial image.

9.4.1 UsING SVM rFor EMOTION CLASSIFICATION

The SVM works as an emotion classifier by following a supervised machine learning
approach. It learns from labeled data to create a model that predicts emotions based
on input features (Alhussan et al. 2023).

i. Feature Extraction: Relevant features like pitch, energy, Mel frequency
cepstral coefficients (MFCCs), or facial landmarks are extracted from the
input speech or image data before classification by SVM. The MFCCs con-
stitute a set of features representative of the spectral envelope of a sound
signal. The spectral envelope is a curve of amplitude values of the signal on
the Y-axis and frequency on the X-axis.

ii. Hyperplane Separation: SVM finds the hyperplane in the feature space
that best separates different classes of emotions. It maximizes the margin
between them. A robust classification is enabled, which is less sensitive to data
uncertainty.

iii. Using Kernel Functions: SVM handles non-linear relationships between
features by employing kernel functions that implicitly map the input data
into a higher dimensional space. Complex emotion classification scenarios
can therefore be handled.

9.4.2 AprpLICATIONS OF SVM IN EMOTION CLASSIFICATION

Applications of SVM extend across a broad range, from speech emotion recognition
to facial emotion recognition (FER) and text sentiment analysis. To name a few, we
mention:
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FIGURE 9.3 Using the support vector machine algorithm for emotion recognition in robot-
ics: (a) the chief elements and (b) the process flow.

i. Recognition of Speech Emotion: Features such as the pitch and intensity of
sound form the basis of classifying emotions from spoken words.
ii. Recognition of Facial Emotion: Features from facial landmarks are extracted
as descriptors of emotions from facial expressions.
iii. Analysis of Text Sentiments: Emotional cues are utilized for determining
the sentiment (positive, negative) underlying a written textual document.
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9.4.3 ADVANTAGES OF SVM FOR EMOTION CLASSIFICATION

As an emotion classifier, the SVM offers many advantages for improved customer
satisfaction.

i. Effective Management of Small Datasets: Training data for emotion recog-

nition is often limited. SVM performs well even with limited training data.

ii. Potential of High Accuracy: A high classification accuracy for emotion rec-
ognition tasks is achievable by properly tuning SVM.

9.4.4 LiMITATIONS OF SVM FOR EMOTION CLASSIFICATION

Using SVM in emotion classification is profoundly swayed by parameter tuning and
interpretability issues. So, attention must be drawn to its limitations.

i. Complexity of Parameter Tuning: Choice of the right kernel function and
hyperparameters for attaining optimal performance is frequently intriguing.

ii. Issues in Interpretability: The decision-making process behind an SVM is
wearisome to comprehend than other algorithms.

9.5 CONVOLUTIONAL NEURAL NETWORKS FOR
ROBOT EMOTION PROCESSING

While SVMs typically require pre-extracted features to make classifications, convo-
lutional neural networks (CNNs) are a group of widely used algorithms for emotion
detection (Ghayoumi and Bansal 2006; Fuertes et al. 2023). They can learn hierarchi-
cal features from raw input data, such as images or text, through their convolutional
and pooling layers in an extemporaneous manner. The CNNs are used principally in
facial expression recognition. They are really top-notch at automatically extracting
features from images of faces. The extracted features are used to classify emotions
of happiness, sadness, anger, and surprise. Accurate emotion identification is pos-
sible from a person’s face using CNNs. Figure 9.4 shows the seven layers in a CNN
and describes the role of each layer. These layers are: the input layer receiving the
facial image, the convolution layer performing feature extraction by applying convo-
lution filters (small matrices sliding across an image); the activation function layer
for introducing nonlinearity in the features; the pooling layer for downsampling the
feature maps; the flattening layer for collapsing the spatial dimensions of data into a
one-dimensional array; the fully connected layer for learning the high-level relation-
ships between features; and the output layer delivering the predicted emotion for the
supplied image.

9.5.1 WORKING oF CNNs For EMOTION DETECTION

What workflow do the CNNs follow? Instead of preprocessing data for deriving
features, the CNN works through a layered structure as follows (Mehendale 2020;
Angel et al. 2024):
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FIGURE 9.4 Layers of the convolutional neural network used for emotion recognition by
arobot.

i. Convolutional Layers: These layers apply a convolution operation to the
input data. This operation uses a learnable filter or kernel that slides over
the input image. During sliding, it performs element-wise multiplications
and sums the results. By applying these filters, local patterns like edges
and textures are extracted from different parts of the face. A feature map is
generated representing the presence and location of specific features in the
input.
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ii. Pooling Layers: The feature maps are downsampled. The downsampling
reduces the spatial dimension. Nonetheless, the most significant informa-
tion is preserved.

iii. Fully Connected Layers: These are the final layers of the network. They
combine the extracted features to predict the emotion.

9.5.2 UsING CNNs For EMOTION DETECTION

Special considerations in using CNNs are as follows:

i. Feature Extraction: Important facial features for emotion recognition are
eye shape, mouth curvature, and eyebrow position. These features are
spontaneously learnt by CNNs. So, manual feature engineering is hardly
necessary.

ii. Image Classification: After feature extraction, the CNN classifies the image
into different emotion categories. An emotion label is assigned for the input
face.

iii. Training Data Amount and Quality: Large datasets of labeled facial images,
corresponding to various emotions, are required for training CNNs. The
data used for CNN training must be diverse in nature. It must represent a
range of different facial expressions and demographics. Then, only high
accuracy is achieved. Demographics are the statistical characteristics of a
human population.

9.5.3 FER IN HuMAN—COMPUTER INTERACTION

A cursory, concise description of FER will provide the background information for
further discussion. FER in human—computer interaction (HCI) is a computer vision
technology. It aims to analyze facial expressions to identify and classify emotional
states, and adapt behavior and output accordingly for emotional interaction. It thus
creates a user-friendly and engaging system that provides a more intuitive and per-
sonalized experience. Conspicuous traits of this technology are as follows:

i. Remarkable Adaptation of System Behavior: Facial expressions are ana-
lyzed in real-time for adapting system behavior based on user emotions.

ii. Outstanding Security and Surveillance Assistance: Facial expressions of
people in public spaces are monitored to identify potential threats or suspi-
cious behavior.

iii. Affective Computing: Systems are developed for understanding and
responding to human emotions.

9.5.4 PerPLEXING SITUATIONS DURING USE oF CNNs
FOR EMOTION DETECTION

There are several bizarre and quaint occasions in which it is really strenuous and
demanding to read people’s emotions and decipher what they are actually feeling.
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i. Analysis of Complex Facial Expressions: Emotion classification is difficult
due to subtle variations in facial expressions.

ii. Variations of Lighting and Pose: Recognition accuracy is adversely affected
by changes in lighting and head position.

9.6 DECISION TREES FOR ROBOT EMOTION DETECTION

The CNNs are particularly strong for tasks like image recognition, where they can
automatically learn relevant features. Aside from CNNs, what more can be found in
the portfolio of algorithms for emotion? Contrastingly, decision trees are non-para-
metric supervised learning methods used for classification and regression. They are
capable of handling various types of data and excel in interpretability. They allow
users to understand the reasoning behind the emotion predictions. A decision tree is a
machine learning algorithm that uses a tree-like structure and pre-programmed rules
to select appropriate responses based on detected emotions (Lee et al. 2011; Noroozi
et al. 2017). The responses help to predict and classify human emotions. The basis of
classification encompasses various input features, including facial expressions, voice
tone, and text analysis. Each node in the tree represents a decision based on specific
criteria. The tree displays a final classification of the emotion expressed. Figure 9.5
shows the four components of the decision tree: root node which is the starting point
of the tree, internal nodes representing specific features of the image, branches which
are the lines interconnecting the nodes, and the leaf node which are the final nodes at
the ends of the branches representing the class of predicted emotion.

FIGURE 9.5 Structural organization of the decision tree structure.
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9.6.1 WOoORKING OF DEecisioN Trees FOR EMoOTION DETECTION

The building blocks of a decision tree are its nodes. In a decision tree, there are three
different types of nodes:

i. Root Node: It is the initial node of the tree. Here, the most important feature
is evaluated.
ii. Decision Nodes: Each subsequent node represents a further evaluation of a
feature. It splits the data into separate branches based on the criteria.
iii. Leaf Nodes: At the end of each branch is the leaf node. It represents the final
emotion classification.

9.6.2 UsING DecisioN TRees FOR EMOTION DETECTION

How are decision trees used in emotion analysis? Decision trees are used by learning
patterns in data like facial expressions or voice tone to predict emotions. The approach
followed consists of the following stages:

i. Classification: Emotion categories like happiness, sadness, anger, fear, sur-
prise, etc. are predefined. The emotions in the input data are categorized
under these headings.

ii. Feature Extraction: First, relevant features are extracted from the input data.
These features are facial landmarks from an image or pitch variations from
speech. Then the decision tree is applied.

iii. Hierarchical Structure: The decision tree structure allows for a step-by-step
analysis. In this analysis, each node represents a question about the features.
The branches of the tree lead to further decisions based on the answers.

iv. Interpretability: One can easily understand how the model reached a par-
ticular emotion classification by following the path through the tree.

9.6.3 APrPLICATIONS OF DEcISION TREES FOR EMOTION DETECTION

Decision trees are used in emotion detection by classifying emotions based on fea-
tures extracted from various sources, like facial expressions, speech, or text, and
using a tree-like structure to make predictions (Sun et al. 2019). A few application
areas are as follows:

i. Emotion Recognition in AI Robotic Systems: Chatbots are built to under-
stand the emotional tone of user interactions.
ii. Affective Computing: Emotional states are analyzed from video or audio
data for applications like sentiment analysis.
iii. Healthcare: Emotional states of patients are monitored through speech
analysis.
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9.6.4 CHALLENGES CONFRONTING DEcisioN TRees IN EMOTION DETECTION

At what point does the decision tree begin to pose problems? Difficulties arise with
an increase in algorithmic complexity in dealing with large data sets and tree struc-
ture complexity. Plausibly, a tree with many nodes and branches is difficult to inter-
pret and debug. The frustration is manifested in various ways.

i. Detection of Complex Emotions: It is difficult to discriminate between sub-
tle emotional nuances.

ii. Context Dependence of Emotions: Context incorporation in a tree structure
is difficult. Emotions that are influenced by context are therefore not effi-
ciently managed.

iii. Desired Data Quality: To achieve good performance, the data used for
training must be accurate and well-labeled.

9.7 NATURAL LANGUAGE PROCESSING ALGORITHMS
FOR ROBOT EMOTION DETECTION

We understand that decision trees are a flowchart-like structure that makes fea-
ture-based sequential decisions. In the decision tree algorithm, each internal node
represents a test on an attribute or feature, each branch represents an outcome, and
each leaf node represents a class label or decision. On the opposite side, natural
language processing (NLP) algorithms generate empathetic and contextually rele-
vant verbal responses. They analyze the text of a message or other content to deter-
mine the emotions or sentiment expressed within it. For detecting emotions in text,
the most commonly used approaches include sentiment analysis algorithms, lexi-
con-based methods, machine learning algorithms, e.g., SVMs and Naive Bayes clas-
sifiers; and deep learning algorithms like RNNs and transformers which can analyze
the context and sentiment of a piece of text to identify the expressed emotions like
happiness, sadness, anger, or fear (Graterol et al. 2021; Maruf et al. 2024). Figure 9.6
shows the stages in NLP: input text; text preprocessing including tokenization, nor-
malization and stemming/lemmatization; lexicon lookup consisting of emotion lex-
icon and word sentiment scoring; feature extraction comprising N-gram analysis,
parts-of-speech tagging and intensity analysis; machine learning algorithm for emo-
tion classification; and the predicted emotion as the output in two forms as emotion
label and emotion intensity.

9.7.1 EmoTtioN DEetecTioN witH NLP ALGORITHMS

Let us survey the composite structure of the NLP algorithm technology. NLP algo-
rithmic methodology incorporates a multiplicity of techniques (Kumar and Geetha
2024), for example:

1. Lexicon-Based Methods: Predefined dictionaries contain words associated
with specific emotions. The sentiment of a text is calculated by counting the
occurrences of these words.
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FIGURE 9.6 The complete workflow from input to output stages in a natural language
processing operation.

ii. Rule-Based Approaches: Linguistic rules are used as pointers toward emo-
tional cues in text. Exclamation marks show excitement. Negative words
imply sadness.

iii. Machine Learning Models:

a. Naive Bayes Classifiers: These offer a simple and efficient method for
identifying sentiment from word frequencies and their association with
emotions.

b. SVMs: These are effective for complex classification tasks, chiefly
when dealing with high-dimensional data.

iv. Deep Learning Models (Guo 2022):
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a. RNNs: They can handle sequential information in text. Hence, they are
well-suited for understanding context and sentiment.

b. Transformers: Pre-trained models exceling in capturing complex lin-
guistic relationships are often used for fine-tuning of specific emotion
detection tasks.

9.7.2 CoONSIDERATIONS FOR NLP ALGORITHMS IN EMOTION DETECTION

Our inquisitiveness compels us to inquire about the vital factors that need attention
with regard to using NLP algorithms for detection of emotions. In the development
and deployment of NLP algorithms, several factors must be taken into account, e.g.,
data quality and quantity, understanding the context and intent behind user input, and
management of ambiguities. Equally important are handling cultural and linguistic
diversity such as different dialects, slang, and formal vs. informal language styles,
along with privacy and security concerns.

i. Data Quality: A diverse and well-labeled training dataset is essential for
NLP models for accuracy in emotion detection.
ii. Context Awareness: The context of a sentence must be understood clearly
for a correct interpretation of emotions.
iii. Multi-Emotion Classification: Not only purely positive or negative senti-
ments, but also more nuanced emotions like joy, anger, and fear need to be
identified.

9.7.3 ArpLicATIONS OF NLP IN EMOTION DETECTION

Applications of NLP algorithms span a wide range, transcending geographical
and social divisions, from analyzing social media and customer feedback for sen-
timent analysis to developing personalized chatbots and supporting mental health
monitoring.

i. Social Media Sentiment Analysis: It helps in understanding public opinion

on various topics through social media posts.

ii. Customer Service Chatbots: Customer sentiment is identified to provide
better service and support.

iii. Market Research: It is a valuable tool for analyzing customer reviews and
feedback.

iv. Mental Health Status Monitoring: Potential emotional distress in text-based
communication is detected to ascertain the mental health status of a patient.

9.8 REINFORCEMENT LEARNING FOR ROBOT
EMOTION DETECTION
How can reinforcement learning methods augment the performance of NLP algo-

rithms? Standard NLP algorithms focus on understanding the overall emotional
tone of a text. Reinforcement learning algorithms are applied to train artificial
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intelligence systems to recognize and respond to human emotions (Moerland
et al. 2018; Akalin and Loutfi 2021). These approaches can enhance the NLP
algorithms by learning from sequential interactions and feedback. Responses are
adjusted based on feedback from interactions by maximizing positive outcomes
and minimizing negative ones. The machines are made capable enough to learn
decision-making from the emotional state of a user by providing positive or neg-
ative feedback, as determined from the outcome of their actions. Therefore, a
more nuanced and context-aware understanding of emotions becomes possible,
particularly in dialogues (Figure 9.7). Figure 9.7a shows the six components of
reinforcement learning-based emotion recognition for a robot: agent, the core
of the system; environment, the source of input data; state, the current informa-
tion available to the agent about the environment; action, the decision made by
the agent after examining the current state; reward, the feedback signal received
from the environment indicating the correctness or inaccuracy of the action; and
policy, the strategy applied by the agent to choose actions suitable for a given
state. Figure 9.7b shows the five steps in the process sequence for emotion rec-
ognition: visual data input, feature extraction, emotion classification, appropriate
action selection for responding to the detected emotion, and reward feedback by
the environment to the agent through a reward signal.

9.8.1 USING REINFORCEMENT LEARNING FOR EMOTIONS ANALYSIS

Let us ask, ‘In what ways is the use of reinforcement learning beneficial for emotion
analysis?’” Reinforcement learning enhances emotion analysis by enabling agents to
learn optimal actions through trial and error. Guidance is received through feedback
from the environment. Improvements in understanding of emotions are achieved by
analyzing how agents react to different situations and external stimuli. It works as
follows:

i. Emotion Recognition: A system is developed to accurately detect emotions
from various input modalities, including physiological signals and body lan-
guage cues, rather than relying on commonly used modalities such as facial
expressions, voice tone, or text analysis.

ii. Design of the Reward Function: A reward function is defined that impels
the Al to respond appropriately to different emotions in order to guide its
learning process.

iii. Decision-Making by the AI Agent: The Al agent chooses actions that are
considered suitable for the emotional context of the recognized emotion. A
possible action could be offering comforting words in response to sadness.
Another likely action consists of providing encouragement in situations that
require motivation.

9.8.2 APPLICATIONS OF REINFORCEMENT LEARNING IN EMOTION SYSTEMS

Why is it necessary to incorporate reinforcement learning into emotion systems?
Reinforcement learning is integrated with emotion systems to enable agents to



FIGURE 9.7 Reinforcement learning: (a) components and (b) the series of actions performed to achieve a desired outcome.

991

sonoqoy |Iv



Emotionally Intelligent Robots: Unlocking More Opportunities 167

learn and make decisions from emotional responses (Huang et al. 2021). Its integra-
tion with emotion systems makes them more adaptable and effective in complex,
real-world scenarios. A few examples are as follows:

1. Chatbots and Virtual Assistants: They enhance the conversational experi-

ence by tailoring responses to the emotional state of the user.

ii. Customer Service Systems: They identify customer frustration/dissatisfac-
tion and provide appropriate support.

iii. Educational Platforms: Teaching methods are adapted in the light of the
student’s emotional engagement.

iv. Healthcare Systems: Emotional distress in patients is recognized and per-
sonalized interventions are made.

9.8.3 ONEeroUS SiTUATIONS FACED DURING USE OF
REINFORCEMENT LEARNING IN EMOTION SYSTEMS

We would like to know: Are there any disadvantages to using reinforcement learning
in emotion systems? Significant drawbacks of reinforcement learning are faced in
some situations, a few of which are as follows:

i. Complex Emotional Nuances: Subtle emotions evade accurate identification
and interpretation.

ii. Data Variability: Large amounts of diverse data are needed by emotion rec-
ognition models to perform well across different contexts and individuals.
The data requirements are massive because reinforcement learning is sus-
ceptible to high variance and instability during the learning phase

iii. Ethical Considerations: Ethical concerns arise from the potential for misuse
of emotional intelligence in Al systems.

9.9 DISCUSSION AND CONCLUSIONS

Several researchers have developed robots capable of recognizing gestures and
emotions. An example is the RYAN SYSTEM (Abdollahi et al. 2023). Deep learn-
ing methods are applied for recognizing multimodal emotions. The output of this
framework is integrated with RYAN’s dialogue management system. The dialogue
management facility is created by writing scripted conversations on many topics.
Topics of science, history, nature, music, movies, and literature are covered. RYAN
detects the facial expressions and analyzes the language sentiments of the user. Then
it empathizes with the user via emotional conversation. It also mirrors the positive
facial expressions of the user.

KISMET (a Turkish word meaning ‘fate’ or ‘luck’) is a socially assistive human-
oid robot. It is located at the Massachusetts Institute of Technology (MIT) Museum,
Cambridge, Massachusetts. It displays several emotions, such as calmness, anger,
happiness, and sadness. It displays body postures and facial expressions, too, accom-
panied by voice tones.
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KASPAR (Kinesics and Synchronization in Personal Assistant Robotics) is a
child-sized robot. It is built by University of Hertfordshire, United Kingdom (UK).
It has a range of facial gestures. The purpose is to make social interaction easier for
children. This robot is especially helpful for children with autism.

PARO (Personal Robot) is a robot developed by the National Institute of Advanced
Industrial Science and Technology, known as AIST. The AIST is a public research
institute, Tokyo, Japan. The PARO is used for stimulating patients with dementia.

KODOMOROID {Japanese word ‘kodomo’ (child) + ‘android’; ‘android’ derived
from the Greek ‘andro’ (man)+ ‘eides’ (shape)} is a child android robot. It is a
humanoid robot with a child-like appearance interacting with people as a child will
do. This robot is seen at Miraikan, The National Museum of Emerging Science and
Innovation in Tokyo. It can recite news and weather reports from around the world.
It is capable of speaking in various voices and languages.

THE EMOTIONAL ROBOT

I am an emotional robot

I usually laugh and play

The whole day

Greeting everybody with hello and hi

But when I am teased by some naughty guy
I like to weep and cry.

Table 9.1 provides the sum and substance of the emotional Al algorithms discussed
in this chapter. In the next chapter, we make a transition from emotion detection to
task and motion planning. An emotion is a subjective feeling or mental state, e.g.,

TABLE 9.1

Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

1 Summary A wide cross-section of emotionally intelligent robot

algorithms was described in terms of their working
mechanisms and advantages and drawbacks. Algorithms
discussed included hidden Markov models, self-organizing
maps, support vector machines, convolutional neural
networks, decision trees, natural language processing, and
reinforcement learning.
Hidden Markov models These are statistical models that analyze sequences of data.
3 Self-organizing maps These maps are artificial neural networks to project
high-dimensional data onto a low-dimensional grid.
4 Support vector machines These machines are supervised learning algorithms for
classification tasks.
5 CNNs These neural networks are deep learning architectures for
image recognition and analysis.
6 Decision trees These are tree-like structures for classification.
(Continued)
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TABLE 9.1 (Continued)
Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

7 NLP These algorithms analyze the sentiment of spoken or written
language to interpret the emotional tone of a conversation
and adjust responses accordingly.

8 Reinforcement learning These are machine learning paradigms in which an agent
learns by interacting with its environment.
9 Keywords and ideas to Hidden Markov models, self-organizing maps, support vector
remember machines, convolutional neural networks, decision trees,

natural language processing algorithms, and reinforcement
learning for robot emotion detection

happiness, sadness, or anger, that arises from a particular situation or experience.
A task is an objectively defined operation or assignment that must be completed.
It has a distinct goal. It requires some form of activity or process to be carried out.
Succinctly speaking, an emotion is a feeling, whereas a task is an action. An emotion
is an internal experience of an individual, while a task is an external action done by
the individual. Excitement aroused by a project is an emotion. Writing its completion
report is a task.
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’I O Robot Task and
Motion Planning

10.1 INTRODUCTION

The daily routine of an individual begins with a lot of planning, either done subcon-
sciously or consciously, starting from what to eat for breakfast, what dress to wear
for going to the office, what conveyance and route to take for reaching the office, and
continuing to include how to face the business meetings or participate in scholarly
discussions, how to reduce stress and anxiety, and so on. Planning is an inseparable
part of our everyday life, both intrinsically and inherently. It improves efficiency and
productivity and increases accountability.

If robots are to be used for various jobs, they must also plan their activities in a
manner similar to humans. Robot activity planning is the process of formulating a
sequence of actions or a train of events necessary to be performed by the robot, i.e.,
creation of a list of actions that must be taken by a robot for the execution of a piece
of work. The work is done by transitioning from a starting or initial state to a final
goal state. The robot may be engaged in working in a static or dynamic environment.
Robotic activity is a combination of two fundamental sub-activities, namely:

i. The task to be performed by the robot, and
ii. The necessary motion undertaken by it to complete the task.

Accordingly, there are two distinct sub-branches catering to the two sub-activities:
robot task planning and robot motion planning. In this chapter, we address both of
these sub-branches. Firstly, they are considered separately, showcasing their indi-
vidual characteristics. Then they are dealt jointly by fusion of the two approaches
to coalesce them and form a unified whole or amalgamated entity representing their
inseparability. Subsequently, we systematically study the search algorithms used for
robot task and motion planning (TAMP). These are used for finding optimal paths
for robot movements while avoiding obstacles.

10.2 ROBOT ACTIVITY PLANNING

10.2.1 RosoTt Task PLANNING

How are the robot tasks planned? Robot task planning works with self-reasoning
by a robot using an internal AT algorithm (Hertzberg and Chatila 2008). The robot
reasons with itself to finalize a sequence of actions to accomplish a given objec-
tive for reaching a desired goal in an environmental setting containing plenty of
objects or items (Morecki and Knapczyk 1999). Obviously, task planning is a discrete
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operation. The reason for its discrete nature is that it aims to select a set of actions
from a range of possibilities.

10.2.2 RoBoT MoTION PLANNING

Robot motion planning is the step following its task planning. In other words, motion
planning is the successor of task planning. Robot motion planning involves deciding
the motions to be executed by a robot in a given environment to accomplish a cer-
tain objective for reaching a specified goal (Latombe 1991; Owen-Hill 2019). Motion
planning is a continuous operation because it focuses on the constant movements
of an individual robot in space. Table 10.1 explicates the aspects of task planning
vis-a-vis motion planning (Marcelina 2022).

TABLE 10.1
Differences between Robot Task Planning and Robot Motion Planning
Point of

SI. No.  Comparison Robot Task Planning Robot Motion Planning

1 Definition It is concerned with determining It deals with the continuous movement
the sequence of actions needed  of the robot, calculating the precise
to be performed by a robot to path to execute each individual action
complete a task, irrespective of  within the task plan, while avoiding
whether it is simple or obstacles and respecting the robot’s
complex. physical constraints.

2 Purpose The robot decides what work it~ The robot determines how to do those
has to do, i.e., determines its tasks.
tasks.

2 Abstraction level It focuses on the high-level It operates at a lower level, focusing on

decision-making of a robot,
considering the actions
involved, e.g., picking up an
object or navigating to a room.

precise joint angles and trajectories to
control the robot’s movement.

3 State space It typically employs a discrete It usually operates in a continuous state
state space, where each state space, considering all possible
represents a distinct action or positions and orientations of the
decision. robot.

4 Input/output Its inputs include the goal of the  Its inputs include the initial and goal
task and available actions, positions, obstacles in the
outputting a sequence of environment, and robot kinematics,
actions to achieve the goal. outputting a collision-free trajectory.

5 Example scenario: The task planner would decide For each action in the task plan, the

A robot is asked
to make a cup of
tea for a guest

the sequence of actions: go to
the tea machine, press the
button for a cup of tea, grab a
mug, pour the tea into the mug,
move the mug to the guest, and
serve tea.

motion planner would calculate the
precise movements of the robot’s arm to
reach the tea machine, press the button,
grasp the mug, pour the tea while
avoiding any obstacles in its path, and
finally serve the tea to the guest.
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10.2.3 Rosotr TAMP

Robot TAMP is the compounding of task and motion aspects. It is an encyclopedic
term embracing the sum-total efforts necessary for the robot to create a sequence
of actions to be executed by a robot in a given environment to reach a specified
goal (Dantam 2021; Antonyshyn et al. 2023). The creation of sequential actions
is done by taking into consideration the physical motions required for the execu-
tion of actions. So, TAMP stretches beyond task planning and has a broader scope
than that. Unlike task planning, TAMP is not restricted to planning a series of
actionable steps. It simultaneously considers the practicable robot movements to
execute those actions. Therefore, TAMP deals with a combination of discrete and
continuous operations. It is a mixed activity formed by blending a discrete opera-
tion (task planning) with a continuous operation (motion planning). Naturally,
integration of discrete planning with continuous planning makes it a complicated
activity comprising computationally intensive and economically expensive phases
(Pan et al. 2024).
A few examples of robot TAMP are as follows:

i. Object manipulation involving moving the robot’s arm to reach an object,
grasping it, and then moving it to the suggested location; placing an
object in the chosen location by avoiding collisions with other objects; and
sorting an assortment of objects based on their shape, size, and color.

ii. Navigating a building to reach a specific room, avoiding walls and stairs;
exploring unknown environments for relief and rescue operations in disas-
ter areas; and driving cars on roads without accidents and following traffic
rules.

iii. Manufacturing and assembly, e.g., welding and painting components to
ensure quality and efficiency, and packaging parts on assembly lines.

iv. Robotic surgery to perform complex life-saving medical procedures.

v. Domestic chores for cleaning, laundry, and providing care for aged or crip-
pled people.

10.3 ROBOT TASK PLANNING ALGORITHMS

10.3.1 Kty PoinTs ABOUT THE RoBOT TASK PLANNING ALGORITHM

Laying down a plan leads to the formulation of an algorithm. In pursuance of the def-
inition of robot task planning given in Section 10.2.1, a robot task planning algorithm
is a computational method used to generate a sequence of actions to be undertaken
by the robot. These actions, taken together, constitute a plan designed for a robot to
complete a complex task. The actions are decided by considering the current state
of the environment, available robotic capabilities, and the desired goals. Taking all
these factors into account, a task planning algorithm begins by defining the task. The
next stage is the decomposition of the task into sub-goals. This is done by break-
ing down the complex task into smaller, manageable actions. The decomposition
process keeps in sight the capabilities of the robot. The limitations imposed by the
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environmental conditions must not be forgotten. A state-space representation is con-
structed based on the task definition and its decomposition. A search is initiated for a
feasible sequence of actions. Techniques like state-space search, heuristic functions,
and constraint satisfaction are utilized to optimize the plan. These are the core con-
cepts in Al problem solving. State-space search is a technique of solving problems in
which an exploration of the space of possible configurations or states is carried out
to find a solution to the problem. The heuristic function gives the estimated cost or
distance from a particular state to the goal state, thus helping the search algorithm
in prioritization of states that lead to the goal more efficiently. Constraint satisfac-
tion concerns finding the values to be assigned to variables for satisfying a set of
constraints.

It is easy to draw an analogy between robot task planning and human task plan-
ning, namely, identifying the goal, breaking down the task into manageable steps,
sequencing and scheduling the steps, allocating resources, setting timelines and
deadlines, monitoring progress, and developing mitigation strategies for bottlenecks
encountered.

10.3.2 MAIN Steps oF THE RoBOT TAsK PLANNING ALGORITHM

Let us draw a roadmap for planning a task for a robot mission. A roadmap is a visual
way for quickly communicating a plan. Figure 10.1 shows the roadmap for planning
a task by a robot. The steps in the roadmap for robot task planning are: task defini-
tion, its decomposition and state-space representation, action modeling, executing a
search algorithm, state-space search, and constraint checking. These are finalized
after significant brainstorming and are delineated below:

i. Definition of Robot’s Task: An explicit statement of the desired outcome
of the robot’s action is made. Specification of the initial and final states of
the robot is unequivocally finalized. A clear mention and recognition of the
relevant objects, locations, and conditions within the task environment is
included.

ii. Decomposition of Robot’s Task: The complex defined task is broken down
into smaller, more manageable sub-goals to reduce overwhelm. The hierar-
chy of actions is laid out. In this hierarchical organization, completion of the
different sub-goals leads to the achievement of the overall goal.

iii. State-Space Representation of Robot’s Task: The possible configurations
(states) of the robot during the task are defined. The state space is repre-
sented using appropriate data structures. Graphs or trees are used.

iv. Modeling of Robot’s Actions: A formal definition is crafted stating the
available actions that the robot can perform in each state. It includes the
constraints imposed on the robot. The constraints derive from joint limits,
reachable workspace, and environmental limitations.

v. Running a Search Algorithm: A search algorithm, such as A* or Dijkstra’s
algorithm, is utilized to find the optimal sequence of actions that constitutes
the path from the initial state to the goal state of the robot. The applicable
cost function, e.g., distance and time associated with each possible action, is
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FIGURE 10.1 The robot’s roadmap for task planning from definition of the task objective
to plan finalization.

evaluated. The cost function quantifies the error in terms of the difference
between the prediction of the algorithm and the actual value. It assesses the
performance of the algorithm and guides its optimization.

vi. State-Space Search: The possible states of the robot are explored by itera-
tively applying actions. Algorithms used for this exploration are breadth-first
search, depth-first search, or A* search to find a path to the goal state. The
breadth-first search performs exploration of the graph level by level. The
depth-first search explores as deeply as possible along a branch before back-
tracking. The A* search determines the shortest path based on the cost of
traversing the edges.

vii. Checking for Constraints and Undertaking Readjustments: A verification of
the adherence of the planned sequence of actions to all enforced constraints
is done, e.g., collision avoidance, joint limits, etc. If any violations come to
notice, replanning is done. The plan is revisited and reviewed. The path of
the plan is adjusted accordingly.
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10.4 ROBOT MOTION PLANNING ALGORITHMS

10.4.1  Key PoiNTs ABOUT THE ROBOT MOTION PLANNING ALGORITHM

To understand the central issues of interest, we revisit Section 10.2.2. Building on
the definition of robot motion planning provided in Section 10.2.2, a typical robot
motion planning algorithm defines the possible configurations of the robot in the
environment in terms of its positions and orientations. It checks for collisions and
then iteratively builds a path from the starting point to the goal. Care is taken to avoid
obstacles and blockades while building this path. Often, a search algorithm is uti-
lized to find the best route. Figure 10.2 shows the constituent steps in the roadmap for
robot motion planning: environment representation, collision detection, sampling,
node connection/path building, searching for optimal path, trajectory optimization,
and path execution. These steps are further expounded below.

10.4.2 MAIN Sters OF THE RoBOT MOTION PLANNING ALGORITHM

These are conceptualized and conjured up after circumspect reflection:

i. Representation of the Environment (Configuration Space): Possible positions
and orientations of the robot in the workspace are precisely put into words
to corroborate insistently that what has been said is correct. Oftentimes,
these positions and orientations are represented as a configuration space.
Each point in this space represents a unique pose of the robot. Configuration
space (C-Space) is a mathematical space. It represents and means all pos-
sible robot configurations. For the identification of the collision areas, the
obstacles within the workspace are suitably modeled.

ii. Detection of Possible Collisions: It means taking a glance to check for the
intersection of a robot’s configuration with any obstacles. A rigorous check
is done for each potential robot configuration to find whether any part of
the robot intersects with any obstacle in the environment. The cruciality of
this step can be appreciated by realizing that making a guarantee that the
planned path is collision-free is a compulsory requirement of motion plan-
ning that cannot be circumvented in any way because it is a safety precau-
tion to avert accidents.

iii. Sampling of Points in the Configuration Space: Sampling-based methods
are algorithms like rapidly exploring random trees (RRT). They randomly
sample points in C-space to find a path. After the points in the configuration
space are randomly sampled, they are vigilantly observed and checked to be
collision-free. If a point is found to be collision-free, the point is accepted
and added as a node in the search tree. Otherwise, it is declined inclusion.

iv. Connections of Nodes/Path Building: The newly sampled node is connected
to existing nodes in the search tree. Checking is done again to make sure
that there is no collision between the robot and any impediment along the
connecting path. This step builds a network of potential paths within the
configuration space.
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FIGURE 10.2 The roadmap for motion planning by a robot.

v. Search for Optimal Path: The graph search utilizes search algorithms like
A* or Dijkstra to navigate a graph. The graph represents possible robot
movements to find the shortest or most efficient path from the start configu-
ration to the goal configuration within the constructed tree. Heuristics are
used to guide the search toward the goal. They are cognitive strategies, like
mental shortcuts or practical guidelines.

vi. Optimization of Trajectory (Optional): The planned path is smoothed and
refined for a more even and efficient trajectory. For path smoothing and
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streamlining, the velocities and accelerations are modified to make sure that
the robot can physically follow the trajectory.

vii. Execution of the Planned Path: The computed path is sent to the robot con-
troller. The controller executes its responsibility to actualize the movement
of the robot in reality, as decided in the plan.

10.5 ROBOT TAMP ALGORITHMS
10.5.1 Key Points ABouT TAMP ALGORITHM

We recall the discussions in Section 10.2.3. In accordance with the definition of robot
TAMP given in Section 10.2.3, and unifying the procedures outlined in Sections
10.3 and 10.4 to create a comprehensive composite picture, robot task and motion
algorithms refer to a set of algorithms in robotics that integrate high-level task plan-
ning (deciding what actions to take) with low-level motion planning (calculating the
robot’s physical movements) (Akbari et al. 2020). The intent is to achieve a complex
goal through concerted effort. The goal could be assembling a product in a factory.
Alternatively, it could involve navigating the robot through an environment by gen-
erating a sequence of feasible actions with corresponding robot trajectories, as noted
in Section 10.2.

10.5.2 MAIN Sters oF TAMP ALGORITHM FOR SOLVING A RoBoTIC PROBLEM

We can now combine the robot task and motion ingredients to create a cocktail. The
key steps of a robot TAMP algorithm typically involve an admixture of task and
motion scheduling operations: definition of the assigned task domain including states
and actions, representation of the robot’s configuration space, identification of con-
straints faced in problem solving, decomposition of the assigned task into sub-goals,
generation of a sequence of actions to execute the task, planning of the corresponding
motions for each action to be performed during the task, and finally, checking for
collision avoidance by the robot while optimizing the overall path for task comple-
tion and motion to be undertaken. Following in the footsteps of robot TAMP, let us
draw a roadmap for the same. Figure 10.3 depicts the roadmap for TAMP by a robot
consisting of problem definition, TAMP, and finally optimization and refinement of
the plan, as explicated below:

i. Definition of the Robotic Problem: It is a methodical and structured organi-
zation of three parts.

a. Description of the Task: The overall goal of the robot is defined. The
definition includes the initial state and the desired final state. Any inter-
mediate objectives are unambiguously spelled out.

b. Modeling of the Environment: An across-the-board representation of
the robot’s workspace is done. This sweeping representation consists
of obstacles and relevant objects in the environment, along with their
properties.

c. Robot Kinematics: The robot’s configuration space is defined. The defi-
nition is inclusive of all the robot joint angles and reachable positions.
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FIGURE 10.3 The roadmap for combined task and motion planning by the robot.

ii. Task Planning for Solving the Robotic Problem: Various algorithms like
A* search, RRT or potential field methods are used depending on the com-
plexity of the task and environment. The particular algorithm is decided by
looking at the trials and tribulations of the case. As discussed in Section
10.3, task planning entails:

a. Decomposition of Assigned Task: The complex task is dissevered into
smaller, more manageable subtasks or actions. Each sub-task should be a
single, achievable piece of work. It must be plainly and concisely stated.

b. Selection of Actions: Appropriate actions are chosen based on the cur-
rent state and desired goal. Constraints like object manipulation or envi-
ronmental interactions are given due attention.

c. Sequencing of Actions: The order of the selected actions is decided.
The purpose is to produce a systematized tableau showing the logical
sequential actions for performing the task.

iii. Motion Planning for Executing the Solution to the Robotic Problem:

Recalling discussions in Section 10.4, it involves:
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a. Path Planning: A collision-free path is generated connecting the start
and goal configurations for each sub-task. Proper consideration of the
robot’s kinematic constraints is essential for success.

b. Generation of Robo’s Trajectory: The planned path is converted into a
smooth trajectory in an uninterrupted, seamless progression. The veloc-
ities and accelerations of the robot are specified.

c. Detection of Robot’s Collision with Obstacles: An incessant checking is
done for potential collisions of the robot with obstacles throughout the
planned trajectory, considering each and every point on the trajectory.

iv. Optimization and Refinement of the Robotic Problem:

a. Evaluation of the Cost Function: The planned motion is evaluated.
Metrics like path length, execution time, energy consumption, etc., are
used in this evaluation process.

b. Readjustments and Replanning: The robot’s plan is adjusted if found
necessary. The adjustments are made to the plan based on feedback
received from sensors regarding unexpected changes in the environment.

c. Integration of Sensor Data: The sensor data, e.g., vision sensor and
LiDAR readings, are utilized to update the environment model.
A real-time adaptation of the robot’s TAMP is achieved.

d. Incorporation of Learning-Based Approaches: Machine learning tech-
niques are utilized to improve motion planning. These algorithms ben-
efit by learning from experience or adapting to dynamic situations.

10.6 SEARCH ALGORITHMS USED IN ROBOT TAMP

10.6.1 A* SEARCH ALGORITHM

The greatness of A* search is that it is optimal, efficient, and flexible, and so very
special. It is a heuristic-based algorithm commonly used in robot motion planning
and navigation (Xin et al. 2019; Ji et al. 2023). It is also used in other circumstances
in which the determination of the most optimal path through a tangled and puzzling
environment is imperative. A heuristic algorithm is an intuition or empirically guided
rule of thumb for expeditious decision-making. It gives a feasible solution for each
instance of a combinatorial optimization problem at an acceptable cost in terms of
computing time and space. A feasible solution is the set of values that satisfy all
the constraints of an optimization problem. The optimal solution is a feasible solution
resulting in the best value of the objective function. The optimal solution is always a
feasible solution. But the antithesis of this statement is not necessarily true because a
feasible solution need not be an optimal solution. The objective function is the linear
formula used to maximize or minimize a value.

The A* algorithm allows a robot to efficiently find the shortest path from a start-
ing point to a goal location, which is fixed beforehand. While following this route,
the robot navigates around obstacles in its environment. The navigation takes place
under the supervision and watchful eye of a global cost function. The global cost
function is defined as a function expressed by the equation

fn) = gn) + h(n) (10.1)
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where g(n) is the cost function of the path traversed from the initial state to the node
n, and h(n) is the heuristic function representing the estimated cost from node »n to
the goal state. The cost function is a mathematical formula measuring the difference
between the predicted output of an Al algorithm and the authentic expected output.
Formally, we state that

Cost Function = Predicted output — Expected output 10.2)

Examination of the cost function values allows the algorithm to prioritize the nodes
that are closer to the goal sate.

The key component of the A* algorithm is the heuristic function /(n). The func-
tion A(n) estimates the remaining cost to reach the goal from a given node. Based on
the remaining cost, the algorithm lays down priority on the nodes that are likely to
be nearer to the desired destination. The algorithm works by exploration of the neigh-
boring nodes, calculating their total cost given by the equation

Total cost function = Cost from initial state to the node
+ Estimated cost from the node to the goal (10.3)

and selecting the node with the lowest cost to expand thereafter. The shortest path is
calculated by taking into consideration both the costs. These costs include:

i. the cost of reaching a node, and
ii. an estimated cost to reach the goal from that node.

It is re-emphasized that heuristic algorithms provide computationally feasible
approximate solutions. They are not accurate algorithms. Their principal merit is
that they are excellent at finding ‘good enough solutions’ with low execution times,
though not axiomatically the optimal ones. This is of course expected from their
basic approach to the problem. It can be easily envisaged by noting that the heuris-
tic-based algorithms do not conduct an exhaustive search for every possible solution.
So, they are very useful when exact solutions are computationally impractical or
expensive to determine. Optimality is sacrificed to gain speed for finding the solution
in a reasonable time frame.

Two lists are maintained up to date in order to run the A* search algorithm. These
lists are named OPEN and CLOSED (Figure 10.4).

The list OPEN is a data structure representing the set of potential paths that have
not been assessed yet. It contains all the nodes awaiting exploration and evaluation by
the heuristic function during the search process. These nodes have not been expanded
into successors yet. Expansion of a node is the process of applying operators to the
node, producing a set of nodes. The list OPEN is implemented as a priority queue.
The node with the lowest f(n) value is selected next to expand upon.

The list CLOSED contains the nodes that have already been visited. Its purpose is
to prevent the algorithm from revisiting them unnecessarily. An already visited node
is a node in the search space that has been explored and added to the list CLOSED.
The algorithm has, by now, calculated the best path to reach that node from the
starting point. It will not re-evaluate that node again during the search process.
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This means that it is a node that has been definitively considered. Therefore, it is no
longer part of the active search area.

Figure 10.4 illustrates the steps to be followed in the A* search algorithm, start-
ing with the definition of two lists, OPEN and CLOSED. If the OPEN list is empty,
failure is returned. If NO, the algorithm progresses by calculating the cost function.
A node n with the smallest f(n) value in the OPEN list is chosen. This node is trans-
ferred to the CLOSED list while its index is saved. It is checked whether the node n
is the target end node. If NO, the node 7 is expanded by producing all its neighboring
nodes and placing them in the OPEN list. Then the cost function is calculated for
each node produced. The algorithm returns to the stage of selection of the node with
the smallest value of f(n). If YES, the optimal path is calculated using pointers of the

FIGURE 10.4 The A* search algorithm.
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saved indices, and the algorithm stops. A thorough explanation of the procedures of
the algorithm is as follows (Kumar 2024):

i. A list OPEN is defined consisting of the nodes to be evaluated. The OPEN
list is a priority queue. It stores the nodes with their estimated costs.

ii. The list CLOSED is defined.

iii. The node # in the list OPEN with the smallest value of f(n) is selected.

iv. The node n is removed from the list OPEN. It is transferred to the list
CLOSED. Its index is saved; the index of a node in an A* search is its posi-
tion in the OPEN list.

v. If the list OPEN is empty, failure is returned, followed by exiting.

vi. If the node n is a goal state, success is returned, followed by exiting.

vii. The current node 7 in the search tree is examined and expanded by generat-
ing its possible neighboring nodes.

viii. If any successor to n is the goal node, success and solution are returned
by tracing the path from the goal node to node n; otherwise, the algorithm
moves to the next step.

ix. For each succeeding node, the evaluation function is applied to the node; if
the node has not been in either list, it is added to OPEN.

x. The steps are repeated until the goal node or destination is reached.

10.6.2 DuyKSTRA'S ALGORITHM

Dijkstra’s algorithm is a popular algorithm used in robotics to find the shortest path
between a given node and all other nodes in a graph (Sniedovich 2006; Fan and
Shi 2010; He 2022). It was conceived by a Dutch computer scientist, programmer,
software engineer, and mathematician, Edsger Wybe Dijkstra, in 1956, and so is
named after the scientist. It is a useful tool for mobile robots to navigate warehouses
and other spaces. It helps the robots to optimize their routes and avoid collisions
with obstacles. While not guaranteeing efficiency, Dijkstra’s algorithm provides the
shortest path between nodes in a weighted graph. Its core utility is in solving the
shortest-path problem.

Dijkstra’s algorithm uses the weights of the edges to minimize the total distance
between the source node and all other nodes. In Dijkstra’s algorithm, the weights
of edges are positive integers or real numbers. They represent the distance or cost
between two nodes in a graph. Suppose a graph is used to represent the map of a store.
The vertices of the graph are specific points in the store. Its edges are the pathways
in the store. The weight of an edge could be the length of the pathway. If the graph is
used to represent the cost of a robot’s movement between two particular points, the
weight of an edge could represent the cost of moving between those points.

The algorithm maintains two sets: one for visited vertices and another for unvis-
ited vertices. The source vertex is the starting point. The algorithm finds the shortest
path from the source vertex to all other vertices in the graph. It starts at the source
vertex and iteratively selects the unvisited vertex with the smallest tentative distance
from the source. It then visits the neighbors of this vertex. It persistently updates the
tentative distance of the vertex if a shorter path is found. This process continues until
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the goal node or destination vertex is reached, or all reachable vertices have been
visited and explored.

The main steps of Dijkstra’s algorithm are shown in Figure 10.5: creation of a list
of unvisited vertices, designation of the current vertex, and checking whether this
vertex is the destination vertex. If NO, all the vertices leading to the current vertex
are found. Then the distances between the source vertex and each unvisited neighbor
of the current vertex are calculated. If the new distance is shorter than the previous
distance, the distance is updated. If NO, the current vertex is removed from the list of
unvisited vertices, and the algorithm returns to the stage of designation of the current
vertex. However, if the current vertex is found to be the destination vertex, the search
is deemed to be completed, and the algorithm terminates. Specific details of the steps
are furnished as follows (Navone 2020):

i. Initialization and Marking of the Source Vertex: The source vertex is
marked. The distance of the source vertex is set to 0. The distances of all
other vertices are set to infinity.

ii. Designating the Current Vertex: The unvisited vertex with the shortest
distance from the source is chosen. The unvisited vertex with the smallest
distance is set as the current vertex

iii. Finding and Calculating the Distances to the Current Vertex: All the verti-
ces leading to the current vertex are found. The distance from the source to
each unvisited neighbor of the current vertex is calculated.

iv. Updating Distance: The distance is updated if the new distance is found to
be shorter than the previous one.

v. Marking the Current Vertex as Visited: Once all neighbors of the current
vertex have been visited, the current vertex is marked as visited. This vertex
again will never be looked at again.

vi. Repetition: Steps (i1)—(v) are repeated until all vertices are visited.

Dijkstra’s algorithm is based on the principle of the greedy algorithm. A greedy
algorithm is a problem-solving strategy. It chooses the best option at each step with-
out considering the future consequences or possibilities. This means that it always
chooses the solution with the lowest cost. The goal is to find a globally optimal solu-
tion by making locally optimal choices.

Table 10.2 presents the similarities and dissimilarities between A* search and
Dijkstra’s algorithms.

10.7 RRT ALGORITHM

Dijkstra’s algorithm is a deterministic algorithm operating in a static space. The RRT
algorithm is a probabilistic algorithm that iteratively grows a tree to find paths in a
continuous, dynamic space (Caccavale and Finzi 2022; Ding et al. 2023; Xu 2024).
The tree is grown by arbitrarily sampling points in the environment. Sampling is
a method of estimating the characteristics of a population by selecting individual
members or a subset of the population. It helps to make statistical inferences about
the whole population from these members. A sampling-based technique is a method
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FIGURE 10.5 Dijkstra’s algorithm.

that utilizes sampling to achieve a specific outcome. It first samples the possible
configurations. It then builds a graph that approximates the connectivity of the space.

In the RRT algorithm, the indiscriminately sampled points are connected to the
nearest existing node in the tree. During this process, it is always ensured that the
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TABLE 10.2

A* Search and Dijkstra’s Algorithms

Point

SI. No. of Comparison A* Search Algorithm Dijkstra’s Algorithm

1 Commonality A* search is used to find the Dijkstra’s algorithm too is used to
shortest path in a graph. find the shortest path in a graph.

2 Heuristic function It utilizes a heuristic function to It does not use a heuristic function.
estimate the remaining distance  So, it explores all nodes based
to the goal. This function solely on their distance from the
allows it to prioritize paths starting point.
closer to the goal. Hence, it is
more likely to lead to the
solution. Thus, it aids in
making more informed
decisions about which node to
explore next.

3 Efficiency It is usually faster than Dijkstra’s It can be slower due to its exhaustive
algorithm. This is especially search strategy.
true for large graphs. The path
prioritization feature of the
algorithm is the root cause
behind the fast computing.

4 Optimality It may not always find the It always guarantees to find the
optimal solution. Optimality is shortest path. The reason is that it
sacrificed if the heuristic is not explores all possible routes.
properly designed.

5 When preferred It is favored when one needs to It is chosen when finding the

to be used? find the shortest path quickly, absolute shortest path is necessary,

especially in large graphs. It is
also chosen when a possibility
exists for designing a reliable
heuristic function to guide the
search toward the goal.

and the graph is relatively small. It
is also preferred when the accuracy
of the solution is more important
than the speed of execution of the
algorithm.

connection is collision-free. Freedom from collision is maintained until the desired

goal configuration is reached.

Figure 10.6 shows the steps of the RRT algorithm, viz., initialization of the

random tree, setting the starting point Xg
whether the tree reaches the goal point X

ar and the goal point X,,;, and checking
.- If YES, the algorithm backtracks from

the node X, to the node Xg,,,, to trace the planned path. If NO, a random sampling

point Xy, .4m 1 selected. All the nodes in the tree are traversed to find the node X,
Then, a new node X
along the direction of the node X
carest £0 the new node Xy.,, is checked and confirmed to be collision-free. If

at the shortest distance from Xj
sion from the node X
node Xy

andom*

earest

earest

is generated by expan-
The path from the

New

andom*

YES, the node Xy, i added to the random tree. The algorithm returns to finding
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FIGURE 10.6 The RRT algorithm.
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whether the random tree reaches the goal point, accompanied by backtracking from

the node X, to the node Xg,,, to trace the planned path. Then the algorithm stops.

If the answer is NO for the path from the node Xy, to the new node Xy.,, as colli-

sion-free, then the algorithm goes back to the selection of a random sampling point

Xrandom- Further clarifications are given below (Sarkar 2024):

i. Initialization of a Random Tree at the Starting Point: The mobile robot con-
structs a search random tree. This random tree is based on the initial pose
and target pose obtained from the scene map. It is constructed at the starting
point X, of the two-dimensional state space. Then the starting point Xg
of the robot is set as the root node of the random tree. The goal point X
of the robot is also stipulated.

ii. Random Generation of a Sampling Point: A random sampling point Xg,,dom
is haphazardly generated in the free search space. The search space is the
configuration space of all possible positions and orientations of the robot. It
is used to guide the expansion of the random tree.

iii. Nearest Neighbor Search: The nodes that have been generated in the whole
random tree structure are traversed. After completing this traversal of
nodes, the tree node that is closest to the randomly sampled point X,
found. It is selected and defined as Xy, eq-

iv. Extension of a New Node from the Nearest Neighbor Toward the Sampled
Point by Taking a Predefined Step Size: The appropriate step size is
expanded from the node Xy, along the direction of the node X as
the extension direction. A suitable step size is set as the branch length to
generate a new node X, It is the new tree node.

v. Checking Possibility of Collisions: A verification test is undertaken to vali-
date whether or not the new node path collides with any obstacles in the
environment.

vi. Expansion Cancelation on Encountering an Obstacle: If an obstacle is
encountered in the expansion process, the expansion is canceled. After the
cancelation, the sampling is performed again.

vii. Addition of Node in Absence of Collision: If no collision is detected, the
new node is added to the tree.

viii. Iteration of Steps: Steps (ii)—(vii) are repeated until a node in the tree is
close enough to the goal configuration. The algorithm repeats the above
iterative process until the target node exceeds the specified number of itera-
tions. Eventually, a fast-expanding random tree path is formed, ending the
search.

tart

oal

1S

Random

andom

10.8 PROBABILISTIC ROADMAP

Like the RRT algorithm, the probabilistic roadmap (PRM) method is a sampling-based
technique (Zhang et al. 2013; Zhang 2022). While the RRT algorithm employs a
local approach that starts from the initial position, the PRM algorithm adopts a
global approach that encompasses the entire space. The RRT algorithm may not
find optimal paths, but the PRM algorithm can do so. The RRT algorithm incurs
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FIGURE 10.7 The PRM method.

a lower computational cost than the PRM algorithm. But the RRT algorithm can
handle dynamic obstacles, whereas the PRM algorithm is not ideal for dynamic
environments.

The PRM algorithm is particularly suitable for robots with a high number
of degrees of freedom (DoFs). Such robots are required to perform multiple
point-to-point motions in a known workspace. The DoF of a robot is the number of
independent movements that the robot can make. It is a measure of a robot’s motion
capabilities and flexibility. The principal steps of the PRM method for robot path
planning are presented in Figure 10.7. Beginning from the random distribution of
N nodes, the start node is set as the current node. The neighbor nodes of the cur-
rent node are defined. A collision-free edge is created between the current node and
the neighboring nodes. An exhaustive check is carried out to corroborate whether
there are any more nodes. If YES, the next node is set as the current node, and the
algorithm returns to the definition of neighbor nodes. If NO, the algorithm stops.
More details are given as follows (Khokhar 2021):
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i. Preprocessing: A network of collision-free configurations (nodes) is created.
The network is produced by randomly selecting configurations and testing
them for collisions. This step is done only once for a given environment.

Collision detection is a process that determines if two or more objects
are intersecting. The steps for collision detection generally involve check-
ing if the objects are overlapping or lying within a certain distance of each
other. The bounding volume hierarchy is a tree structure composed of a set
of bounding volumes. It is wrapped around geometric objects, which form
the leaf nodes of the tree. The leaf nodes are grouped as small sets. They
are enclosed within larger bounding volumes. These, in turn, are grouped
and enclosed within further larger bounding volumes in a recursive fashion.
Ultimately, a tree structure is obtained. It has a single bounding volume at
the topmost point of the tree. Collision is determined by undertaking a tree
traversal starting from the root and proceeding ahead. If the bounding vol-
ume of the root does not intersect with the object of interest, the traversal is
stopped. If, however, there is an intersection, the traversal proceeds further.
Those branches are checked for which there is an intersection.

ii. Planning: The initial and final configurations of the robot are connected
to two nodes in the network. A path is then computed through the network
between these two nodes.

10.9 DISCUSSION AND CONCLUSIONS

This chapter outlined the various methods employed in robot task planning, motion
planning, and TAMP all of which play a crucial role in robotics and require inten-
sive debating and deliberation (Table 10.3). Task planning aims to build a structured
plan to reach a prescribed goal (Zhang et al. 2022). It works by decomposition of the
complicated long-horizon task into elementary short-duration subtasks. Hierarchical
methods, heuristic searching methods, and operator planning methods have been
used for task planning. Logic programming offers several advantages, such as greater
expressivity and interpretability, which are helpful in making safe and reliable robots
(Meli et al. 2023).

Motion planning is the extension of path planning, seeking to generate interac-
tive trajectories in the workspace when robots interact with a dynamic environment,
necessitating consideration of kinetic features and velocities of robots and moving
objects nearby as they move toward the goal.

TAMP allows robots to not only plan high-level actions like picking up an object
but also generate the precise movements necessary to execute those actions while
avoiding collisions. It bridges the gap between abstract tasks and the physical motions
required to achieve them. It enables robots to be more autonomous and adaptable in
complex environments.

Task planning operates at a higher level, deciding on the overall sequence of
actions, such as ‘grasp the tea cup, move to the guest’, while motion planning han-
dles the lower-level details of how to physically move the robot to accomplish those
actions (refer back to the example in Table 10.1). Task planning often involves dis-
crete choices about which object to pick up and which path to take. Motion planning
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TABLE 10.3

Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

1 Summary Robot activity planning consists of task planning, motion

planning, and combined robot task and motion planning. Key
points and main steps of all types of algorithms for robot
activity planning were described. Search algorithms used in
robot task and motion planning were discussed, including the
A* search algorithm, Dijkstra’s algorithm, the rapidly
exploring random tree algorithm, and the probabilistic

roadmap.

2 A* search algorithm It is a graph traversal and pathfinding algorithm that utilizes a
heuristic function to estimate the distance to the goal from
each node.

3 Dijkstra’s algorithm It is a classic, deterministic method to determine the shortest

path between two points in a graph.

4 RRT algorithm It involves randomly sampling points in the search space,
connecting them to the existing tree, and gradually expanding
the tree until it reaches the goal point.

5 Probabilistic roadmap It operates by randomly sampling points in the free space to
algorithm create a network of connected nodes and then searching for a
path between the start and goal nodes within this roadmap.
6 Comparison of A* and Dijkstra are ‘informed search algorithms’ prioritizing
algorithms exploration of closer nodes to the goal, while the rapidly

exploring random tree algorithm and the probabilistic
roadmap are both randomized algorithms used in complex,
high-dimensional spaces.
7 Keywords and ideas to Robot activity planning, robot task planning, robot motion
remember planning, robot task and motion planning, A* search
algorithm, Dijkstra’s algorithm, rapidly exploring random
tree algorithm, probabilistic roadmap.

deals with continuous variables like joint angles and velocities to generate smooth
trajectories. By integrating task and motion concepts in TAMP, robots perform intri-
cate manipulation tasks like assembling components or navigating cluttered environ-
ments, which are difficult to program manually. Advanced TAMP systems allow
real-time adaptation. The robots can react to changes in the environment or unex-
pected situations by adjusting the robot’s actions on the fly.

Several robot path and motion planning algorithms, collision avoidance, and navi-
gation were delved into. Path planning determines the path between the origin and
destination within the workspace, which is the area where an algorithm operates
or a task exists. It applies strategies based on the shortest distance or the shortest
time. The traditional path planning algorithms can meet most requirements. Motion
planning algorithms comprise traditional planning algorithms, and classical machine
learning algorithms, including reinforcement learning (Zhou et al. 2022). Combined
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TAMP is receiving extensive attention. TAMP solutions are required in situations
such as self-governing robots engaged in ground drilling for the extraction of materi-
als (Mansouri et al. 2021; Guo et al. 2023).

A self-driving car utilizes TAMP to determine when to change lanes, navigate
intersections, and avoid obstacles, while generating smooth driving trajectories.
Robots in industrial manufacturing can use TAMP to pick and place objects, assem-
ble components, and perform complex manipulations while optimizing movement
efficiency. A service robot assisting humans could use TAMP to plan a sequence of
actions like fetching a drink, opening a door, and placing items on a table.

Integrating high-level task planning with detailed motion planning is computa-
tionally elaborate and expensive, especially in dynamic environments. Handling
of uncertainties, such as dealing with sensor noise and imprecise environmen-
tal information, is extremely enervating and backbreaking for accurate motion
planning. Physical constraints must be considered to ensure that the generated
motions are mechanically feasible for the robot, duly considering its joint limits
and dynamics.

In the next two chapters, we dedicate ourselves to the subject of autonomy in
robotics. It refers to the ability of a robot to work without human control by perceiv-
ing its environment, using Al to make decisions and acting on those decisions by
initiating the requisite movements voluntarily and of its own accord, in a given situ-
ation at the right moment.
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’I ’l Autonomous Robots

SLAM, APF, and
PID Algorithms

11.1  INTRODUCTION

Autonomy is the quality of being self-governing. Autonomous individuals are com-
manded by their own personal rules. Autonomy is synonymous with self-determina-
tion, self-reliance, independence, and sovereignty.

Autonomous robots are intelligent devices that can work without recourse to
human control. They are able to perceive their environment through advanced sen-
sors. Indeed, they can also analyze the situation with Al assistance in real time, make
decisions, and respond to the real world independently. These capabilities help them
in performing tasks in various working and congested environments. The compe-
tencies and skills built into them render them smart enough in adapting to dynamic
conditions with minimal-to-no human intervention, either through a guide or tele-
operator control. Therefore, the actions of autonomous robots deeply contrast with
those of traditional industrial robots. Illustrious examples of autonomous robots are
self-moving vacuum cleaners, self-driving automobiles, and space probes. On the
flip side, primordial and less advanced robots can only be programmed for execut-
ing repetitive tasks/movements in controlled environments (Mukhopadhyay and Sen
Gupta 2007; Liu et al. 2023).

THE AUuTONOMOUS ROBOT

I am an independent robot

I am my own master

A real-time decision maker

I never falter

Helping the homemaker

As a domestic aid and house caretaker
I plan my tasks meticulously
And wander in the house freely
Working silently and gracefully.
By evening, all my jobs are done
And I am praised by everyone.

This chapter describes the multi-talented autonomous robots possessing qualities for
independent operation. These robots can be programmed to perform various simple
and complex tasks in production environments, working tirelessly for long hours
with superhuman efficiency. By surpassing human limits, they can achieve more in
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less time. ‘Superhuman’ is a fictional concept that has a real-world focus on reach-
ing high productivity and throughput in factories with effective tools and strategies.

We first compile a list of algorithms useful for autonomous robotics and then
embark on a tour from one algorithm to another, gaining insights into their prin-
ciples, merits, and demerits.

11.2  ALGORITHMS USED IN AUTONOMOUS ROBOTS

Algorithms play an important role in autonomous robot navigation. They hold the
secret to robot action planning. They help to produce optimal paths distinguished by
features such as being short in length, apart from being smooth, sturdy, and safe to
tread. They are the routes that are free from obstacles and hurdles.

Autonomous robots function through the agency of various algorithms. All
these algorithms work together in unison to enable a robot to perceive its envi-
ronment, navigate, and make decisions on its own. Autonomous robot algorithms
are listed in Figure 11.1. These algorithms are: pathfinding algorithms, short path
finder algorithm, simultaneous localization and mapping (SLAM) algorithm, arti-
ficial potential field (APF) algorithm, PID (proportional-integral-derivative) con-
trol algorithm, decision matrix algorithm, bug algorithm, vector field histogram
(VFH) algorithm, generalized Voronoi diagram (GVD), perception algorithms,
and reinforcement learning algorithms. A cursory description of these algorithms
is given below; it will be followed by an in-depth treatment in impending sections
of this chapter:

i. Pathfinding Algorithms: They use data to predict and pre-scan the paths of
robots from their current positions to destinations. They aid in discovering
the best driving route on a map, taking into account the state of the traffic.
Traffic condition refers to the status at a given location at a particular instant
of time. The A* and Dijkstra’s algorithms are two indelible instances that
have stood the test of time.

ii. Short Path Finder Algorithm: It is used to find the shortest and easiest way
of traversing a maze, a confusing network of passages with twists and turns.
Dijkstra’s algorithm works by iteratively selecting the node with the small-
est distance from the starting point. Then it updates the distances to its
neighbors. Thus, it effectively creates the shortest route from the source to
all reachable nodes.

iii. SLAM Algorithm: It is used by a robot for sketching a map of an unknown
environment and tracking down its own location inside the map (Jain
et al. 2021).

iv. APF Algorithm: It is a magnetic field-inspired method for path planning
in robotics that employs a notion akin to magnetic forces to guide a robot
toward a target point (Al Jabari et al. 2022).

v. PID Control Algorithm: It maintains the desired behavior of the robot by
adjusting the control signals fed to it. The adjustments are based on the
error measured by the difference between the current state and the wanted
or wished-for state of the robot (Wang 2025).
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FIGURE 11.1  Algorithms used in autonomous robotics.
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vi. Decision Matrix Algorithm: Here, a robot analyzes the sensor readings and
environmental parameters in light of possible necessary actions by organiz-
ing them in a matrix format to make a selection of the best path of action to
reach its final location (Li 2023).

vii. Bug Algorithm: This is a simple obstacle avoidance strategy known as the
wall-following method. In this strategy, the robot uses proximity sensors
(ultrasonic or infrared) to consistently follow a wall from a distance until it
finds a path to the goal (Sivaranjani et al. 2021).

viii. VFH Algorithm: It is an obstacle avoidance algorithm. A histogram rep-
resentation of the surrounding environment is the main idea underpinning
this algorithm; the histogram is a graphical visualization of a distribution
of data using bars with data values on the X-axis and the frequency of data
points on the Y-axis (Yim and Park 2014).

ix. GVD Algorithm: It is used for robot path planning in environments replete
with complicacies of multiple obstacles, where traditional methods strug-
gle and grapple to find a solution. It guarantees safe collision-free routes
by defining the closest areas to different points in the environment (Chen
et al. 2022).

x. Perception Algorithms: These algorithms use sensory data, including sight,
sound, and touch, to understand the environment. An example is computer
vision, specifically object detection, where convolutional neural networks
are utilized for image processing. Robot vision was discussed at length in
Chapters 5-7.

xi. Reinforcement Learning Algorithms: These algorithms enable robots
to learn optimal actions through a trial-and-error practice of repeated
attempts and refinements in complex environments (Wen et al. 2025). In
this hit-and-miss or cut-and-try method, solutions are cyclically tried at ran-
dom and refined until one works.

11.3 SLAM ALGORITHM

11.3.1  PrINCIPLES OF MAPPING AND LOCALIZATION

What do we do when we navigate an unknown environment? We access tools like
Google Maps on our mobile phones and enter the starting and destination points to
get travel directions and an estimated time. Alternatively, if we have a physical map
and a compass, we can find directions and keep track of recognizable landmarks
to stay on the right path. If we get lost, we can also ask locals for help. But how do
robots work in such situations? One possible method is to use the SLAM algorithm.

The SLAM algorithm is employed as a computational method in robotic vision.
It allows moving platforms such as robots and autonomous systems to navigate
unknown spaces and environments, such as uncharted territories or novel, obscure
places, safely and effectively (Liu et al. 2021; Qiao et al. 2024). During the motion of
the robot through an unfamiliar and outlandish environment, it takes sensor readings
from its camera or laser scanner to identify landmarks. Landmarks are the features
that are easily noticeable in the landscape from a distance. The robot then uses this
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information to create a map of its surrounding environment. The map is continuously
updated and regularly refreshed by integrating new landmark information with the
existing map in a consistent and accurate manner. Robotic activity is not restricted
to map building only. We know that a job half done is as good as none. So, the
robot concurrently determines its own position within that map. Further, it regularly
updates both the map of the environment and its own estimated position in real time.
In this way, the usefulness of the algorithm is demonstrated in allowing robots to
navigate without reliance on pre-existing maps.

11.3.2  MAIN Steps OF THE SLAM ALGORITHM

The typical SLAM robot algorithm follows a pipeline consisting of many steps of
which the principal ones are: data acquisition by the robot’s sensors, extraction of
landmarks in the acquired data, data association by linking sensor measurements to
landmarks, state estimation by calculating robot’s current position and orientation
(pose) from sensor data and updating it through new measurements, map building,
and loop closure detection when the robot revisits a previously mapped area (loop
closure is the process of determining that a robot has visited a previously investigated
location). These are divided into front-end and back-end operations.

Figure 11.2 shows the steps involved in SLAM. The algorithm begins when
the robot’s camera and LiDAR sensors start functioning. The front-end operations
are composed of: data acquisition, feature identification, landmark extraction, data
estimation, and position determination, while the back-end operations entail the
calculation of the robot’s current position and pose. Any of the SLAM variants are
used, viz., EKF-SLAM, FastSLAM, GraphSLAM. Accordingly, the robot’s posi-
tion and pose are updated, followed by exploration, map building, and updating.
After this process, the algorithm stops. Loop closure detection and map refine-
ment are completed, as indicated. Further minutiae of steps in the algorithm are
presented below:

i. Sensor Data Acquisition: The robot continuously senses its environment. It
uses sensors like LIDAR, cameras, or a combination of sensors to collect
environmental data. The sensors capture information such as distances to
obstacles and visual features of the robot’s surroundings. The data is in the
form of images or laser scans about the robot’s circumjacent areas.

Different types of sensors used for acquiring data have their assets and
flaws. The accuracy and complexity of the SLAM algorithm are impacted
by the individual, specialized, and dedicated sensors used. This means that
the algorithm is sensor-dependent.

ii. Feature Identification and Landmark Extraction from the Sensor Data:
Depending on the sensor type, distinctive features in the sensor data, nota-
bly corners or edges, or specific patterns, monuments, or prominent and dis-
tinctive constructions, are identified to serve as landmarks. The algorithm
uses these landmarks to refine the robot’s position and orientation.

iii. Data Association and Position Determination by Matching with Landmarks:
The robot matches landmark observations across different viewpoints. It
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FIGURE 11.2  The simultaneous localization and mapping algorithm.

attempts to match newly detected landmarks to previously observed ones
(existing features in the map) to determine correspondences between them.
The correspondences are applied to find the robot’s position relative to the
landmarks and update its position and map. Incorrect matches are filtered
out based on distance or other criteria; this process is termed outlier rejec-
tion. Noise and potential ambiguities render landmark matching really labo-
rious and exhausting.

iv. State Estimation or Pose Update: The algorithm calculates the robot’s cur-
rent poses within the map. These calculations are done using wheel encod-
ers, motion sensors (odometry) to estimate relative movement between robot
positions and orientations (poses), and a filtering technique like a Kalman
filter or particle filter. Based on its current estimated pose and the sensor
data, the robot updates its estimated position.

Note 1: Odometry is a method that applies motion sensor data to estimate
arobot’s position from a starting point.

Note 2: The Kalman filter is a popular mathematical algorithm. It uti-
lizes noisy data and a predictive mathematical model of the system to esti-
mate the system’s state, enabling real-time process monitoring. A series of
measurements is performed over time to calculate the state of a system,
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and a recursive filtering method is applied to minimize the mean squared
error (MSE). The recursive filtering method is a computational approach
that continuously updates its approximations of the robot’s state and the
map of the environment using new sensor data by reusing the results from
the prior calculations. A combination of linearity (where the change in
output is proportional to the change in input) and Gaussian noise (normal
or random noise) is considered for predicting and correcting real values.
Thus, mathematically tractable calculations are done to form an impres-
sion of real-world values with noisy data. The noise is assumed to follow a
Gaussian or normal distribution characterized by a bell-shaped curve. Itis a
common archetype for casual and unplanned fluctuations.

v. Exploration, Map Building, and Updating: The location of identified fea-
tures on the map is stored as 3D points or other suitable data structures. The
robot persists in its exploration of the area until it has adequate landmarks
to create a map of the environment. It then builds a map by integrating
new landmark information with the existing one, ensuring consistency and
accuracy.

The robot continuously updates the map based on new information by
adding new landmarks and their relative positions with sustained explo-
ration, incorporating information from the state estimation. To maintain
computational efficiency, optimization algorithms such as bundle adjust-
ment — a nonlinear least-squares method for refining visual reconstruc-
tions — are often used to refine the map and robot pose estimates.

vi. Loop Closure Detection: To correct for accumulated errors, the algorithm
detects loops in the path, i.e., situations where the robot reenters a formerly
mapped area. This is done by making a similarity identification in which
current sensor data is compared to previously stored map information.
Whenever a loop closure is detected, the robot’s estimated pose and map are
adjusted to minimize inconsistencies and variabilities. Thus, loop closure
detection corrects for potential errors by allowing for map refinement.

11.3.3  DIrrereNT VERSIONS OF THE SLAM ALGORITHM

There are several approaches to the SLAM algorithm, as well as various types of
SLAM algorithms.

11.3.3.1  Visual SLAM (vSLAM) Algorithm

In this SLAM, cameras are primarily used to capture visual data of an environment.
The visual data is unscrambled and interpreted to build a map of the environment.
Computer vision is used for identification, confirmation, and cataloging of features
and patterns in the images. It is an economical method. Detailed color and texture
information is obtained. It is suited to well-illuminated scenes and augmented real-
ity applications, e.g., medical training, education, entertainment, manufacturing,
and retail. It is used in indoor robotics. But changes in lighting conditions, natu-
ral light or artificial illumination, or presence of textureless or featureless surfaces
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lacking any notable characteristics create difficulties to sabotage the algorithm
functionality.

11.3.3.2 LiDAR SLAM Algorithm

It utilizes laser scanners to acquire depth information for more precise mapping of
the environment (Malik 2023). A 3D map is created by measuring distances to vari-
ous objects and generating a 3D point cloud, a dataset containing numerous points in
a 3D X, Y, Z coordinate system with each point representing a specific spatial mea-
surement on the surface of an object. The method is highly accurate. Soft, low light-
ing-based dimly illuminated scenes evoking serene and tranquil to mysterious and
somber moods, as well as environments containing several obstacles, are mapped.
The hardware used is more expensive than that of vSLAM. Difficulties are experi-
enced with reflective surfaces, e.g., curved mirrors, which cause waves to bounce off
in different directions. It is useful for autonomous vehicles, industrial robotics, dark
spaces, and outdoor terrains.

11.3.4 CommoN SLAM ALGORITHMS

i. Extended Kalman Filter-SLAM (EKF-SLAM) Algorithm: The EKF-SLAM
algorithm is an extension of the standard Kalman filter, which is enhanced
for a definite purpose. It is designed to handle nonlinearity by linearizing
the equations of the system around its estimated current state. Its need arises
because the robotic motion is not always necessarily linear. The robot’s
position, velocity, and acceleration are modeled as a nonlinear system.

ii. Rao-Blackwellized Particle Filter-SLAM (FastSLAM) Algorithm: It pro-
vides an improvement over the EKF-SLAM algorithm. Here, particle filters
are used for handling uncertainty and nonlinearity. Hence, mapping is effi-
ciently done in complex environments

iii. GraphSLAM Algorithm: The map and robot path in the environment are
graphically represented. The nodes of the graph are the landmarks. Its
edges denote the movement of the robot between the nodes. Therefore,
map updating, its optimization, and loop closure detection can be effi-
ciently done. Particle filters are recursive Bayesian filters. They constitute a
sequential Monte Carlo method for estimating the state of a dynamic system
when confronted with nonlinearities and non-Gaussian noise. Here, a set of
weighted samples or particles is used for approximating the posterior prob-
ability distribution.

11.3.5 ArprLICATIONS OF THE SLAM ALGORITHM

The SLAM algorithm is the foundation of robot navigation. It allows computers to
perform computationally intensive tasks much faster than humans. A few examples
of situations of its utilization are:

i. Navigation of Autonomous Robots: SLAM is used to plot the robot’s tra-
jectory and steer its mobility along the plotted course. It can be applied to
unknown indoor or outdoor environments.
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ii. Navigation of Self-Driving Cars and Other Autonomous Vehicles: Maps of
the road and surroundings are sketched using SLAM. These maps aid in
planning routes for vehicle transportation.

iii. Navigation of Drones: Maps of difficult terrains are built with SLAM with
regard to their physical features. Aerial exploration of the mapped region is
conducted using drones, which seek guidance from these maps.

iv. Augmented Reality: Virtual objects are computer-generated digital images.
These are accurately positioned in the real world with the help of SLAM by
allowing a device to build a map of the surroundings and at the same time
understand its location. Precise appearance of virtual overlays on real-world
surfaces is thereby ensured with the user’s movement.

11.3.6 ADVANTAGES OF THE SLAM ALGORITHM

The advantages of an algorithm refer to the situations, qualities, or opportunities
that result in a positive outcome. Let us see the ways in which the SLAM algorithm
proves beneficial in robotics.

i. Provision of Self-Governing Navigation to Robots: Robots can navi-
gate without pre-existing maps, permitting robot activity for exploration
of dynamic environments. Non-requirement of a map is a boon in many
situations.

ii. Offering Real-time Mapping Facility: Maps of the environment are continu-
ously generated as the robot moves around. The map generation enables the
planning of a secure path for robot’s motion avoiding obstacles.

iii. Affording Capability of Sensor Fusion: Data from multiple sensors such
as cameras, LiDAR, and inertial measurement unit (IMU) are integrated
for increasing accuracy and robustness of the algorithm. The IMU is a
device that measures and reports the acceleration, angular rate of motion
and acceleration of an object. It contains accelerometer, gyroscopes and
magnetometers.

iv. Furnishing Adaptability: Changes in environment of robot can be handled
by SLAM. Their handling allows the robots to adapt to new situations.

11.3.7 LiMITATIONS OF THE SLAM ALGORITHM

Reliance on an algorithm without understanding its limitations leads to unforeseen
and potentially negative outcomes. We would like to mention the following draw-
backs of the SLAM algorithm.

i. High Computational Cost Demands: Real-time data processing using
SLAM algorithm needs significant power consumption. The power require-
ment increases especially when dealing with large spaces and complicated
lighting conditions.

ii. Loop Closure-Related Issues: Identification of errors and making the neces-
sary corrections is difficult when revisiting previously mapped areas. As
a consequence, drifts are noticed in the map. The issue is intensified with
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increasing complication of environment because cumulative errors creep in.
They accumulate over time leading to significant deviation from true value,
which is observed as an underestimation or overestimation of the value.

iii. Environmental Dependences and Effects of Circumstantial Variability on
SLAM: Poor lighting, textureless monotonous surfaces, or cluttered envi-
ronments are detrimental to SLAM performance impacting its utilization
adversely.

iv. Sensor Noise-Induced Errors: SLAM is extremely sensitive to noise from
sensors, e.g., undesired fluctuations or variations in the output that do not
reflect the true state of the measurand. The noise introduces inaccuracies in
the map and robot localization.

v. Maintenance of Correct Calibration of Sensors: A precise calibration of
sensors is warranted to guarantee accuracy in SLAM. As the sensors are
prone to drift with time, maintenance of correct calibration is a painstaking
necessity that cannot be oversighted. Corrections for temporal drifts in sen-
sor characteristics must be invariably applied.

11.4 APF ALGORITHM

The APF algorithm is a robot path planning algorithm. The APF algorithm can be
used in conjunction with SLAM to provide local path planning capabilities for robots
that already utilize SLAM for localization and mapping. APF focuses on the specific
task of path planning and obstacle avoidance, whereas SLAM concentrates on the
overall problem of mapping and localization.

In the APF algorithm, the location of the robot’s goal is represented by an attrac-
tive potential and the obstacles in its path are represented by repulsive potentials. The
attractive and repulsive forces are used to create a virtual potential field. The motion
of the robot is controlled within this virtual potential field. The algorithm guides the
robot toward a goal location while simultaneously avoiding obstacles (Rimon and
Koditschek 1992; Tao 2024; Bharali et al. 2025).

11.4.1  APF ALGORITHM TERMS

The algorithm primarily involves creating a potential field around a robot. It works
by impersonating a magnetic field concept through simulation of the attractive and
repulsive forces. As already indicated, the attractive forces pull the robot toward
the goal whereas the repulsive forces push it away from obstacles. Before going into
details of the algorithm, the main terms of the algorithm are defined in the context of
robotics and navigation. Figure 11.3a shows a robot and a target on the opposite sides
of an obstacle which is located in the middle. The directions of the attractive and
repulsive forces between the robot and the target are shown by arrows. With refer-
ence to the diagram, we introduce the algorithm terms and then explain its working.

APF: This field is a mathematical representation of the attractive and repulsive
forces acting at each point in the environment surrounding the robot.

Attractive force: This force is a representation of pull exerted from the robot toward
the goal. It pulls the objects together. It is generated by the distance and direction
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FIGURE 11.3  The artificial potential field algorithm: (a) key terms and (b) execution steps.
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to a designated goal point. Its direction points directly toward the goal. Therefore,
the closer the robot is to the goal and the more directly it is aligned with the goal,
the stronger is the attractive force. The goal acts as a source of attraction (positive
potential).

Repulsive force: This force is a representation of the push of the robot away from
obstacles. It pushes the objects away. It is generated by the distance and direction to
obstacles. Hence, the closer the robot is to an obstacle and the more directly the robot
is aligned with the obstacle, the stronger is the repulsive force pushing it away from
the obstacle. The obstacle is a source of repulsion (negative potential).

Working of the Algorithm: An environment is modeled as a landscape in which
obstacles are represented as high-potential areas represented as hills, and the goal is
a low-potential area at the bottom of a valley. The robot is guided toward the goal by
following the gradient of the potential field.

The algorithm proceeds as the robot navigates by following the gradient of
this potential field. Effectively, the robot moves toward the goal while avoiding
any impediments on the way. The gradient attracts the robot toward the target
but repels it away from obstacles. During the course of its motion, the velocity
of the robot is determined by summing up all the forces acting on it (Rostami
et al. 2019).

11.4.2 MAIN Steps oF THE APF ALGORITHM

The algorithm formulation consists in formalizing the status of the various terms
mentioned in the preceding subsection for the robot whose motion is being studied
(Xia et al. 2023). Figure 11.3b illustrates the steps in the algorithm. It starts by defin-
ing the robot’s environment and the potential field. Then the field functions are cre-
ated. Setting ¢ = 1, the resultant force vector acting on the robot is calculated and the
robot movement takes place. It is checked whether the robot has reached the goal. If
NO, iteration ¢ = ¢ + 1 is set and the algorithm returns to the force vector calculation
stage. If YES, the algorithm stops. The steps of the algorithm are elucidated below to
dispel any doubts (Figure 11.3b).

i. Definition of the Environment: The definition involves formal identification
of the important positions regarding the robot’s movement and in reference
to the robot. These are the starting and goal positions of the robot as well as
locations of all obstacles in the workspace.

ii. Definition of the Potential Field: The definition entails the creation of a
mathematical function that generates an attractive potential around the goal
and a repulsive potential around obstacles.

iii. Creation of Potential Field Functions: These are the two parts comprising
the potential field.

a. Attractive Potential Field: This field is created by introducing a func-
tion that generates an attractive force toward the goal. It decreases with
distance to the goal, and is designed to have a minimum at the goal.

b. Repulsive Potential Field: This field is created with a function that gen-
erates a repulsive force away from obstacles. It increases as the robot
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gets closer to an obstacle, and is designed to be inversely proportional
to the distance from an obstacle.

c. Calculation of the Potential at Each Point: The calculation is performed
to determine the combined potential by summation of the attractive
potential from the goal and the repulsive potential from all obstacles.
Regarding the calculation points, the calculation is done for each point
in the environment or workspace of the robot.

iv. Computation of the Resultant Force Vector Acting on the Robot: Computation
is performed to find the gradient of the potential field at the current position
of the robot. The gradient of the potential represents the resultant force act-
ing on the robot. This computation is done at each iteration.

v. Movement of the Robot: For motion of the robot, the position of the robot is
updated based on the calculated resultant force vector. It is always ensured
that the robot moves toward the goal while sidestepping any obstacles stop-
ping it from moving.

vi. Repetition: Iteration is continued through the previous steps until the robot
reaches the goal location or encounters a situation where it cannot move fur-
ther. Such a situation arises when the robot is trapped in local minima where
the gradient is zero. The trapping of robot causes it to oscillate around that
point.

11.4.3  IMPORTANT CONSIDERATIONS ABOUT THE APF ALGORITHM

Correctness, clarity, and efficiency of the algorithm and the optimal use of resources
are ensured by adopting various measures:

i. Selection of Potential Function: For ensuring a smooth navigation of the
robot, one must stay away from becoming cemented in local minima.
Hence, the choice of appropriate functions for the attractive and repulsive
potentials is an important consideration. They must be chosen after careful,
appropriate judgments made by thoughtful evaluation and discernment.

ii. Detection of Obstacle: Accurate detection of obstacle is necessary for cre-
ation of a trustworthy repulsive potential field. This is made achievable by
using a reliable sensor and associated unswerving instrumentation system.
An ultrasonic sensor, a camera providing depth information, or a LiDAR are
employed for this intent. The instrument is equipped with sophisticated data
processing techniques. The instrument’s methods must be such that they
provide precise data about the distance and location of obstacles through
accurate identification and modeling of the boundaries of the obstacle. The
data processing techniques of interest must include:

a. Segmentation of Obstacle: The pixels or points in sensor data attributed
to obstacles must be correctly identified. They must be unmistakably
disassociated from background noise.

b. Filtration of Obstacle: False positives that are likely to interfere with the
potential field calculation must be eliminated. So must be the noisy data
points.
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c. Modeling of the Obstacle Shape: The shapes of obstacles should be
approximated with geometric primitives. Circles, rectangles, or more
complex mathematical models are used depending on the situation at
hand.

iii. Issues about Local Minima: APF algorithm sometimes gets fastened to local
minima. In these situations, the resultant force becomes zero. Zeroing of the
force happens even when the goal is not reached. Techniques are available to
alleviate this issue. Addition of random noise or modification of the potential
field are beneficial. The current position of the robot and the robot’s envi-
ronment must be taken into account. Then the parameters of the potential
field must be dynamically adjusted. Espousing this procedure helps in avoid-
ing the robot’s getting trapped in local minima. Application of a smoothing
algorithm to the calculated potential field further blunts or softens the abrupt
and sharp gradients. Consequent to this rounding and evening out, the path
becomes smoother, making it easier for the robot to follow.

11.4.4 ArpLicATIONS OF THE APF ALGORITHM

The APF algorithm helps to automate several operations in robotics, such as:

i. Navigation of Mobile Robots: It is used for guiding robots through cluttered
or disorganized and congested or jammed areas while avoiding hindrances.
This is done by identifying suitable pathways and adjusting movements of
the robot based on real-time obstacle detection, and adapting to dynamic
environmental changes.

ii. Planning of Autonomous Vehicle Path: It is used for creating collision-free
trajectories for self-driving cars. On these trajectories, cars can navigate
from place to place without bumping into each other and dashing into the
pedestrian crowd.

iii. Navigation of Unmanned Aerial Vehicle (UAV): The flying of drones in gorged
environments bursting at the seams is successfully regulated with APF.

11.4.5 ADVANTAGES OF THE APF ALGORITHM

The APF algorithm offers the advantages of efficiency and clarity in robotic prob-
lem-solving. Among its potential benefits, we would like to give prominence to the
following:

i. Intuitive and Easy Implementation of the Algorithm: The concept of attrac-
tive and repulsive forces is relatively simple to understand in principle. It is
also easy to implement in coding.

ii. Real-Time Capability: The calculation of force is computationally efficient
with minimal computational overhead requirement. The computational
efficiency allows for near-instantaneous decision-making and adaptation
to changing conditions. Therefore, its recommendation for real-time path
planning is obvious and incontrovertible.
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11.4.6 DISADVANTAGES OF THE APF ALGORITHM

Among the main downsides of the APF algorithm, the following stand out clearly:

i. Problem of Local Minima: In complex environments, the robot might get
jammed in local minima (Zhu et al. 2006). Here, the forces from obstacles
annul each other, thus preventing the robot from reaching the goal. As the
robotic vehicle does not reach the destination, there is no assurance of suc-
cess of the algorithm in such configurations. A hang-up ensues.

ii. Oscillation of Robot Path: The robot might oscillate around obstacles due to
rapidly changing forces. It appears to be locked in a repetitive back-and-forth
bouncing in the form of an oscillatory or vibratory motion. The design
efforts made for potential field play a vital role in producing such oscilla-
tions. An ill-chosen potential function leads to sharp gradients. The sharp
gradients coerce the robot to make overreactions to small changes in dis-
tance to obstacles or the goal. Non-balancing of the attractive and repulsive
forces is another cause of occurrence of oscillations. Then one force domi-
nates over the other, and oscillations are instigated. Local minima too are
the likely responsible factors for swaying and swinging behavior.

11.5 PID ALGORITHM

While the APF algorithm is devoted to robot path planning, the PID algorithm is a
feedback control system that adjusts the state of a system to match a desired setpoint
or target value (Figure 11.4). It is used to control the movement of a robot precisely

FIGURE 11.4 The proportional-integral-derivative controller.
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through the regulatory action. The regulatory action is calculated by combining three
parameters, namely, the current error, the accumulated error over a duration of time,
and the rate of change of the error. In this manner, the algorithm allows the robot to
maintain a desired position or trajectory. The algorithm is frequently used for robotic
tasks such as tracking a defined path by adjusting the speeds of robot’s motors based
on the feedback signals received from on-board sensors (Carmona et al. 2018; Minh
Nguyet and Ba 2023).

11.5.1 CoMpPONENTS OF THE PID ALGORITHM

As its name suggests, the PID algorithm has three principal components (Waseem
2023; Smith 2024):

i. Proportional (P) Component: This component reacts and responds directly
to the current error. It provides an immediate correction proportional to the
magnitude of error.

ii. Integral (/) Component: This component accumulates the error over time.
Building up the mistake with time helps in elimination of steady-state
errors. A gradual adjustment of the control signal based on the past errors is
utilized.

iii. Derivative (D) Component: This component measures the rate of change of
the error to make a prediction of the future behavior of error. The pace at
which the error changes with time helps in reducing oscillations. It improves
the response time by allowing to counterpoise any sudden changes rapidly
and damping overshoots.

11.5.2  Steps OF THE PID ALGORITHM

The PID algorithm works with the help of sensors, calculations, and adjustments.
The sensors used by the robot include ultrasonic/infrared proximity sensors,
encoders, GPS, and line sensors. The line sensor detects the presence of a contrast-
ing black line on a white surface by emitting infrared radiation and measuring the
reflected radiation intensity. A phototransistor indicates whether the line is present
or absent, thus ensuring that the robot follows its designated path.

The sensors measure the current state of the robot and compare it to the desired
state. This comparison allows calculation of the error to be applied. The PID algo-
rithm then calculates a control output. This calculation is based on the proportional,
integral, and derivative components of the error. The control output is used to
adjust the speed of the robot’s motor, its steering, and other actuators. These adjust-
ments help the robot to correct the error and enable it to reach the desired position
satisfyingly.

Figure 11.4 shows the PID controller containing blocks on proportional, integral
and derivative terms and the summation block. The setpoint is defined. The control
signal is fed to the robot’s actuators. The feedback signal is compared with the set-
point to calculate the error. The steps of the algorithm are detailed below:
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i. Definition of the Robot Setpoint: This is done by specification of the desired
position, velocity, or other parameters of the robot that are to be maintained
by the algorithm.

ii. Measurement of the Feedback Signal: Sensors acquire information about
the current state of the robot, e.g., its actual position and velocity.

iii. Calculation of Error Signal: This signal is found by computing the differ-
ence between the setpoint and the measured feedback value.

iv. Proportional Term (K,) Computation: A control output signal is calculated.
It is directly proportional to the current error.

v. Integral Term (K;) Computation: The error signal is accumulated over time.
It provides a correction for persistent errors.

vi. Derivative Term (K,) Computation: The rate of change of the error is cal-
culated. It helps to anticipate future locomotion behavior of the robot. It
intends to avert potential overrun. So, the robot is prevented from any likely
overshoot.

vii. Combination of Three Terms: The proportional, integral, and derivative
terms are added together to determine the final control output.

viii. Application of Control Output Signal: The calculated control signal is trans-
mitted to the actuators, usually motors of the robot to adjust its movement.

11.5.3 IMPORTANT AspPecTs OF PID CoNTRrOL IN RoBOTICS

To make the PID algorithm more accessible and useful, it is necessary to lay empha-
sis on the aspects that cannot be ignored. Some of these are:

i. Tuning of PID Controller Gains (K, K;, K,): Choosing suitable values for
the proportional, integral, and derivative gains is an essential prerequisite
for attaining responsive and steady robot control serving as a necessary
precondition for robot’s stability.

ii. Selection of Suitable Sensors Fulfilling Specifications: The performance of
the PID controller is greatly impacted by the accuracy and precision of the
sensors used to measure the error. Therefore, they should be selected after
careful thought.

iii. Comprehension of Dynamics of Robot Motion: Effectively designing and
tuning of a PID controller is highly reliant on understanding the mechanical
characteristics of the robot with which the designer must be fully conversant.

11.5.4  AprpLICATIONS OF THE PID ALGORITHM

The PID algorithm finds widespread usage in robotics. The following applications
merit special attention:

i. Tracking of Robot’s Path and Accurate Adherence to its Moving Line: It
is used for following and maintaining a predefined path for the robot. The
direction and speed of the robot are continuously adjusted to force it to stay
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exactly on the intended trajectory line by varying motor speeds based on the
sensor readings from a line-following sensor. It makes the robot capable of
detecting lines by measuring reflected light emitted by its own infrared LED.

ii. Avoidance of Obstacles: The movement of the robot is controlled on the
basis of proximity sensor data for maintaining a safe distance of the robot
from obstacles. Maintaining safe distances from nearby objects is a reliable
collision avoidance precaution.

11.5.5 ADVANTAGES OF THE PID ALGORITHM

The PID algorithm offers several advantages for autonomous robots, including its
implementation simplicity and ability to provide precise control in various situations.
It is reiterated that the algorithm is often a favorite choice in robotics in view of the
following plus points and privileges (Yuldashev and Solovev 2024):

i. Simple and Easy Implementation: From the software viewpoint, PID con-
trollers are relatively straightforward to understand and implement. They
allow rapid prototyping and deployment on robots.

ii. Broad Range of Applicability: PID controllers are effectively used for a
wide range of robotic motion control tasks. The variety of tasks include the
controlling of position, velocity, and acceleration of robots.

iii. Precision of Control: PID algorithms achieve accurate and stable robotic
control by combining proportional, integral, and derivative actions.
Steady-state errors are minimized in this multipart process.

iv. Tunability of Gains: Based on the particular robot system, the gains of the
P, I, and D components are altered to fine-tune and tailor the response of the
controller to achieve desired performance characteristics of the robot.

v. Robustness to Environmental Disturbances: PID controllers are able to han-
dle external disturbances to the system. They can maintain control even in
dynamic environments.

11.5.6 LiMITATIONS OF THE PID ALGORITHM

The limitations of this algorithm include the possibility of instability in case of
improper tuning of gains, trouble in managing highly nonlinear systems, and sensi-
tivity to noise, particularly in the derivative component. These restrictions degrade
its utility for monitoring discombobulated, dynamic environments. Exact robotic
modeling is difficult in these cases.

i. Complexity of Tuning: Although appearing to be conceptually simple at
the first sight, determination of optimal PID gains is often perplexing.
This is done by trial and error manifestly for complicated robotic systems.
Sometimes advanced tuning techniques are resorted to.
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ii. Sensitivity to Noise: The derivative component of PID amplifies noise in
the system. Instability ensues if noise is not properly filtered to improve the
quality of the signal.

iii. Limitations Concerning Nonlinear Systems: PID controllers are designed
for linear systems. Naturally, these controllers do not perform optimally in
scenarios with highly nonlinear dynamics. Additional control strategies are
necessary for tackling these situations.

iv. Possibility of Overshooting Response: Improper tuning causes significant
overshooting of the response of a robotic system. Consequently, the accu-
racy and stability of the system are negatively affected.

v. Limited Adaptability to Changing Environments: In general, the PID con-
trollers are not designed to automatically adapt to significant changes in the
environment or robot dynamics. Re-tuning of the controller is required to
cater to such variations.

Overall, PID algorithms serve as invaluable tools for controlling autonomous robots.
Their simplicity and effectiveness make them favorites of design engineers in many
scenarios. Notwithstanding these benefits, careful consideration of their drawbacks
and making appropriate tuning are crucial for optimal performance. Expressly,
dynamic environments must be handled with caution.

11.6 DISCUSSION AND CONCLUSIONS

Autonomous robots can work in hazardous conditions inside nuclear reactors
or aero-engines where humans obviously will not even dare to imagine getting
entry. They can improve efficiency, safety, and productivity in many industries
by consistently handling repetitive tasks with precision avoiding errors associ-
ated with manual operations and reducing production downtime. Humans can
focus on more complex work. Autonomous robots can assemble parts. They can
weld parts and paint finished products. They can help with inspection, moni-
toring, and quality assurance in manufacturing. They can be engaged in logis-
tics and warehousing to optimize picking, sorting, and storing items. They can
prepare orders and transport heavy payloads in the supply chain. They can be
employed in healthcare to work for disinfection, and delivering medical supplies.
They can assist in agriculture with harvesting, weeding, crop monitoring, and
optimizing irrigation systems. They can reduce labor costs wherever applicable.
Owing to their adaptability to changes in their environments, they can perform
myriad other operations in dynamic and unpredictable environments of several
sectors to usher in a new revolution in robotized, computerized, and mechanized
manufacturing.

In this chapter, the SLAM, APF, and PID algorithms in autonomous robotics were
reviewed (Table 11.1). This discussion of autonomous robotic algorithms will be con-
tinued in the next chapter to unearth some of its boundless potentialities.



214 Al Robotics

TABLE 11.1
Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation
1 Summary Algorithms used in autonomous robots were listed. The advantages and
limitations of these algorithms were outlined.
2 SLAM It is an algorithm that enables the robot to build a map of its environment
algorithm and locate its position within that map. Different versions of the SLAM

algorithm are discussed, viz., visual SLAM and LiDAR SLAM. Common
SLAM algorithms are mentioned, e.g., extended Kalman filter
(EKF-SLAM), FastSLAM, and GraphSLAM.

3 APF algorithm  This algorithm simulates a potential field in which attractive forces pull the
robot toward the goal while repulsive forces push it away from obstacles.
Main steps, important considerations, and applications of artificial
potential field algorithm are elaborated.

4 PID algorithm It is a feedback control algorithm which works by adjusting a controller
output. Components of the proportional-integral-derivative algorithm, its
steps, important aspects and applications are reviewed.

5 Keywords and ~ Autonomous robots, simultaneous localization and mapping algorithm,
ideas to visual SLAM, LiDAR SLAM, artificial potential field algorithm,
remember proportional-integral-derivative algorithm
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12 Autonomous Robots
Broadening the Perspective

12.1 INTRODUCTION

As technologically advanced robots, including ground robots, underwater robots,
and unmanned aerial vehicles, are being increasingly utilized in industry, secu-
rity, and military applications, a multitude of autonomous robot algorithms have
been developed to achieve robots’ autonomy. The technical literature has a virtual
deluge of research papers on this topic. Each algorithm demonstrates its problem-
solving ability, mettle, and fortitude in a distinct area, and finds befitting applica-
tions depending on the robot’s environment and the desired task. The autonomous
robot algorithms primarily focus on the themes of path planning, obstacle avoid-
ance, and decision-making for a robot within a dynamic environment. Some algo-
rithms rely heavily on accurate sensor data for decision-making. Others are based on
pre-programmed paths and behaviors, and therefore, can operate independently of
sensors. Plain and modest environments benefit from easier algorithms, while intri-
cate and dynamic settings require advanced methods. Algorithms with faster com-
putation times are essential for applications that require quick, reactionary responses
to changing conditions. Therefore, it will be expedient to expand our coverage of
autonomous robot algorithms in Chapter 11. Building on this, we present numerous
ingenious algorithms in this chapter to enable the reader to gain a holistic under-
standing of the status quo in autonomous robotics.

12.2 GENERAL ASPECTS OF THE DECISION
MATRIX ALGORITHM FOR ROBOTS

Effective decision-making underpins all management processes. In fact, it is the
cornerstone of successful management, leading to the sustainability of individuals
and organizations. A decision matrix within the framework of autonomous robotic
algorithms refers to a structured approach for analyzing problems that a robot will
encounter (Venkata Rao and Padmanabhan 2006; Ralfs et al. 2022). In this approach,
a robot analyzes various germane factors related to it. These factors include the data
recorded by its sensors, conditions of the environment, and potential actions taken by
the robot. The prime aspect of this analysis is the use of a matrix format as a rectan-
gular arrangement of numbers or symbols laid out in rows and columns to systemati-
cally evaluate and choose the best course of action based on predefined criteria. In
essence, it facilitates the process of making well-informed decisions by a robot in
intricate circumstances. A well-informed decision-making involves arriving at deci-
sions after gathering all the relevant circumstantial information about a problem and
considering numerous possibilities and options for redressal.
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12.2.1  PurPOSE OF A DECISION MATRIX

A weighted decision matrix is polyonymous, being known by various names. Some
of these names are grid analysis, Pugh matrix, decision grid, or problem selection
matrix. The decision matrix is a powerful method for assessing and selecting the
optimal choice from a range of opportunities. It is particularly useful if one has to
hand-pick many options with several different factors involved in influencing the
outcome. It is relatively easy to use and is most effective when deciding between a
few comparable choices. Using a decision matrix is strongly endorsed when one is
presented with several comparable options. It is also recommended when an indi-
vidual must select only one choice from many given alternatives. It is persuasively
suggested in cases where a rational decision should be made rather than one based on
an emotional standpoint. It is instrumental for decision-making in robotics.

12.2.2 CREATION OF A DECISION MATRIX

For generating a decision matrix, one must thoroughly comprehend the issues that
arise when handling a given situation, as well as their ramifications and relative sig-
nificance in determining the solution to address the situation. After all these issues
are properly understood, one can frame an analytical table or matrix containing rows
and columns. In this table, decision alternatives are listed as rows of the matrix. The
columns of the table list the relevant factors such as effectiveness, ease, and costs
related to these alternatives. An evaluation scale is set up. This scale assesses the
value of individual alternatives and combinations. Normally, the scale has the follow-
ing form: the highest importance is assigned a value of 10, and the lowest importance
is equated to 0. This scale must be consistent and unwavering throughout the matrix.
To appraise the score of an entry in the matrix, the original ranking of that entry is
multiplied by the corresponding weight, which is a numerical value expressing its
importance in relation to other entries in determining the consequence. Then all the
factors under each option are added together to get a weighted sum for that option.

12.2.3  StEPS IN MAKING A DECISION MATRIX

Creating a decision matrix algorithm is a multi-phase process comprising seven pri-
mary steps (Figure 12.1): conceptualization, parameterization, organizing the deci-
sion matrix, filling in the entries, assigning weights, calculating weighted scores,
and aggregating them to obtain the total score. If the desired criteria are satisfied,
the algorithm is stopped. Otherwise, we return to the step of constructing the deci-
sion matrix, unless we arrive at the best concept. These steps are elaborated below
(UMass 2025):

i. Identification of Alternatives from Which a Selection Is to Be Made: The
available options catering to the problem in hand are found and listed in
order to choose between similar choices.

ii. Formulation of Criteria for Making Decisions: The vital factors that influ-
ence decisions are clearly defined and laid down. Outlining the crucial
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FIGURE 12.1 Flowchart of the decision matrix algorithm.
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factors aids in focusing on the best decision while steering clear of subjec-
tivity. Subjectivity refers to the unique and personal perspective, feelings,
opinions, and experiences of an individual. These qualities shape the indi-
vidual’s understanding and interpretation of the world. They contrast with
objective facts or universally agreed-upon truths.

iii. Creation of a Decision Matrix in a Grid Format: A grid is constructed
to evaluate and compare the multiple considerations and options that are
visible.

iv. Filling the Entries in the Decision Matrix. A predetermined scale is agreed
upon for rating the considerations on a single benchmark. A 1-3 scale suf-
fices if variations between options are limited. But a 1-5 or, 1-10 scale
becomes necessary if there are several options.

v. Assignment of Weights to the Criteria: There is a hierarchy of importance of
the criteria in the decision-making process. Some criteria or variables need
to be prioritized over others. Therefore, numerical weights are assigned to
each criterion. The allotted weights reflect their relative impacts on the deci-
sion in order to indicate the best option.

vi. Generation of the Weighted Scores of the Options: The more significant
an option is, the higher its weight. As more important criteria are assigned
higher values of weights, the weighted score assists in ranking the options
for selecting the optimal choice.

vii. Calculation of the Total Score for Each Option: As a last action in the deci-
sion matrix, the total score is calculated. The total score provides a clear
picture of the problem, allowing for the best decision to be made. It is easy
to select the choice that best fits the desired criteria by merely looking at this
picture.

12.2.4 ADVANTAGES OF DECISION MATRIX

As already mentioned in the beginning of Section 12.2, perhaps the most formidable
task in everyday life is making correct decisions, especially those that affect an
entire team and their performance. Various aspects must be observed. The tech-
nique aids in making difficult and complex decisions, particularly in cases of a team
of people working together to achieve a target. When stakeholders participate in this
process, several skewed viewpoints are involved. So, one cannot rely on everybody.
The decision matrix promotes introspection among team members. It makes them
analyze their decisions impartially. In such cases, the decision matrix technique
is regarded as the most effective tool for making decisions for intricate situations
plagued by perplexities.

Following a decision matrix approach, one is able to give precedence to tasks
in order of their significance, one can construct arguments, and solve problems.
Therefore, a decision matrix is a perfect instrument when one encounters several
quantitative criteria. It helps in selecting among seemingly comparable solutions
to dispel the confusion and bewilderment originating from the blurred similarities
between them.
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12.2.5 DISADVANTAGES OF DECISION MATRIX

The disadvantages arise from the likely errors introduced during the evolution of a
decision matrix. The criteria alternatives for framing the decision matrix are cho-
sen randomly. This arbitrariness means that there is no way to know whether the
list is complete. It is likely that some important criteria have been overlooked. It is
equally probable that some less important criteria are included or given more weight.
The less important ones distract the decision-maker from making the right choice.
Ultimately, the values that are attributed to guesses are derived from quantitative
measurements. So, the decision matrix sometimes gives a deceptive and incredibly
illusory appearance of being scientific without providing any quantitative measures.

12.2.6  SpeciALIZED ASPECTS OF A DECISION MATRIX IN
AutoNomMous RoBoT ARTIFICIAL INTELLIGENCE (Al)

The main aspects of adecision matrix for an autonomous robot are (Medrano-Berumen
and Ilhan Akbas 2020):

i. Collection of Data: The robot collects data from the sensors installed on it,
e.g., the cameras, LiDAR, and ultrasonic sensors. Raw data is not fed into
the decision matrix. Translation of the gathered data into relevant param-
eters contributing to decision-making for the problem is done for the prepa-
ration of decision matrix.

ii. Matrix Structuring and Organization: The matrix is organized into a
row-and-column format. As already mentioned, the rows of the matrix rep-
resent potential actions. The columns in the matrix signify different factors
or criteria, e.g., the distance of the obstacle, the type of terrain, and the level
of safety.

iii. Assignment of Weighting Factors for Criteria in the Matrix: Each criterion
in the matrix is assigned a weight. The weight assignment is based on the
importance of the criterion for the decision in order that the considerations
are correctly prioritized. After weights have been allocated, the vital con-
siderations stand out clearly among the less influential ones.

iv. Evaluation Process of Input Data for Decision-Making: The robot compares
the sensor data to the matrix. It calculates a score for each possible action.
The assistance of weighted criteria is sought for this calculation. Ultimately,
the robot chooses the action with the highest score and implements the
same.

12.2.7 CommoN Al ALGoritHms Usep witH DEcisioN
MATRICES IN AuTONOMOUS ROBOTS
An instance of the use of a decision matrix is understood from the example of robot

navigation in a chaotic setting, where a robot uses a decision matrix to choose the
best path. Factors like distance to obstacles, type of terrain, and potential risks are
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preconceived and premeditated by the robot. The robot assigns higher weights to fac-
tors that significantly contribute to safe navigation. It utilizes several Al algorithms
for acting independently, notably (IIoT World 2018):

i. Bayesian Inference Algorithm: This algorithm enables the robot to incor-
porate uncertainty into its analysis. The robot updates its beliefs about the
environment based on new sensor data. This makes it possible for the robot
to judge the situations more deeply. Hence, it can decide correctly and con-
gruously, rendering the right verdicts.

ii. Reinforcement Learning (RL) Algorithms: These algorithms allow the
robot to learn through a trial-and-error approach. In these algorithms, the
robot is rewarded for its positive actions and penalized for any negative
actions performed by it. Through this reward-and-penalty procedure, the
robot’s decision-making process undergoes continuous refinement over
time.

iii. Deep Learning (DL) Algorithms: Decision trees and neural networks are
used to train the robot in two different ways. First, the robot is trained on
the critical factors that are most important for decision-making. Second, it
is trained to assign weights to these factors, keeping their criticality levels
in mind.

12.2.8 CHier CONSIDERATIONS WHEN USING DECISION MATRICES

The following considerations ought to be given careful thought:

i. Management of Complexity of Decision Matrix: The larger the number of
factors involved in making decisions, the higher is the complexity of the
decision matrix. The more complications introduced, the greater is the need
for careful design and optimization of the decision matrix.

ii. Examination of Unforeseen Cases: Unexpected events and potential set-
backs are likely to be encountered during the use of a decision matrix. The
matrix must, therefore, be designed to manage such issues by furnishing
clear-cut answers.

iii. Explainability of the Decision-Making Process: The decision matrix should
provide a perspicuous exposition of the process by which the robot reached
a particular decision. The decision-making process must be crystal clear
from the structure of the decision matrix and weight assignment consider-
ations. It must be understandable with as little effort as feasible.

12.2.9 DecisioN MATRIX FOR A SELF-DRIVING RoBoTiCc VEHICLE

A decision matrix for a self-driving vehicle is structured in a row-and-column for-
mat, similar to a normal matrix, with horizontal and vertical lines (Umbrello and
Yampolskiy 2022). This structure presents an assessment of several possible courses
of action in light of the environmental characteristics detected by the sensors of the
vehicle. On the basis of this assessment, the vehicle can determine the safest and
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best-suited line of action in real time. Factors such as road conditions, status of traf-
fic congestion, presence of pedestrians and potential roadblocks are envisaged and
properly accommodated in the computation. Each cell in the matrix represents a pos-
sible decision. This decision is worked out from the combination of input parameters.

12.2.9.1
The main elements of a matrix are its constituent rows and columns. These are

Al Robotics

Key Elements of a Self-Driving Vehicle Decision Matrix

ascribed separate roles in the following ways:

i. Rows of the Matrix: The entries in the rows of the matrix illustrate many
possible environmental conditions that the vehicle will face during travel-
ing, e.g.,

a
b
c.
d
e

The road is clear or jammed,

The vehicle is getting closer to an intersection,

The vehicle is approaching a pedestrian crossing,

The vehicle is nearing a spot where lane changing is needed, or
There is a sharp turn ahead.

ii. Columns of the Matrix: The entries in the columns of the matrix show the
possible courses of action that the vehicle will take, e.g., whether it will
maintain its speed, apply acceleration, or press its brakes to slow down;
other possibilities are that the vehicle will change lanes, turn left/right, or
go straight.

Vital factors included in the decision matrix are as follows:

i. Real-time sensor information on a range of topics:

a.

Object Detection: Type of object, whether pedestrian, vehicle, or bicy-
cle; distance of the object from the vehicle; speed of the object if it is
moving,

Lane Markings: Transverse/longitudinal, lane width, text/symbols,
present/absent, clear/vague,

Traffic Signals: Red (stop), yellow (caution), green (go), whether present/
absent,

Weather conditions, including whether it is sunny, cloudy, raining,
foggy, windy, or snowing, along with temperature and humidity levels.

Visibility or other atmospheric conditions limiting the sightline, whether
clear or poor,

Road Geometry: These could be specified in different forms, e.g., a
bend or curve in the road or a sharp turn where one cannot see around
the corner; a sloppy/bumpy road or a smooth, flat road with no incline.

ii. Vehicle State: Current speed of the vehicle, its acceleration and the angular
direction of its steering determine the state of the vehicle

iii. Ethical Considerations: They must be categorically complied with. Notable
among them are:

a.

Reduction of the chances of injury to the passengers and driver of the
vehicle, as well as other road users, must be rigorously followed.
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b. Road users vulnerable to unintentional injuries by accidents, e.g., chil-
dren, pedestrians, cyclists, etc., must be prioritized.

12.2.9.2 Decision-Making Process
The process from sensory input to actuation of the vehicle mechanism consists of:

i. Sensor Inputs: The self-driving vehicle uninterruptedly seeks data from its
sensors about the present status of the surrounding environment.

ii. Analysis of Sensor Data: The system processes the sensor data. Relevant
information for driving a vehicle is extracted. This includes the location and
movement of other vehicles, the presence of any pedestrians or perambula-
tors on/near the road, and the indications of markings on the road.

iii. Evaluation of Decision Matrix: The data is analyzed. Based on the analysis,
the system looks up at the applicable cell in the decision matrix. From the
cell, it determines the best action to be initiated.

iv. Execution of Action by the Vehicle: The vehicle executes the selected action.
The action could involve braking or accelerating the vehicle, or changing
lanes, as required during the finalization of the decision.

12.2.9.3 Challenges in Vehicle Decision Matrix Design
Many difficult situations arise during the designing of a decision matrix, viz.

i. Handling Complex Scenarios on Roads: There are occasions that require
negotiating rare or unexpected situations regarding which no clear rules,
transparent policies, and defined guidelines exist. What happens when a
person talking on a mobile phone and carelessly crossing the road without
looking at the traffic suddenly comes in front of the vehicle? Then emer-
gency braking is the only solution.

ii. Dealing with Borderline Cases: Suitable answers and responses to abstruse
or edge situations are not described. These responses require detailed dis-
cussion and clarification.

iii. Getting Caught in Ethical Dilemmas: These quandaries arise when deci-
sions are to be made in grave, life-threatening situations where there is no
definite outcome. A decision is to be made from multiple options. None of
these options might be completely morally right, thus forcing the robot to
choose between conflicting ethical principles. They might potentially cause
harm to different parties. Negative consequences are likely to occur regard-
less of the decision made. Careful attention and amendments are therefore
necessary.

12.3 BUG ALGORITHM

While a decision matrix helps robots make choices based on various factors, the
bug algorithm is a path-planning strategy that enables them to reach their destina-
tion. The bug algorithm is an effective and efficient method for autonomous robots
to avoid obstacles on their paths (Yufka and Parlaktuna 2009; McGuire et al. 2019).
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Its utility varies with context. It is mostly utilized by autonomous robots that have
local sensor information to guide them toward a target goal. It is particularly useful
when the robot does not have a complete map of its environment beforehand. It is
highly useful in scenarios such as indoor robotics, where it controls robots for clean-
ing jobs and those that move around in crowded areas. Therefore, circumstance-based
benefits for the algorithm can be availed by the user.

The bug algorithm is a path-planning algorithm based on the principle of a robot
following a wall. It enables a robot to navigate effectively around obstacles in an
environment by essentially following the wall of an obstacle. The robot follows the
wall until it reaches a point on the boundary of the obstacle that is closest to its goal
(in the simplest Bug0 variant of the algorithm). Then it continues its motion toward
the goal until it encounters another obstacle. The wall-following robot repeats the
process until it reaches its prescribed destination (Buniyamin et al. 2011; Liu 2024).

We shall look into further details about the departure point of the robot because
it depends on the particular variant of the bug algorithm. So, we shall talk about this
point further when we come to the discussion of variants.

12.3.1  MAIN FEATURES OF THE BUG ALGORITHM

What are the characteristics of the bug algorithm? Let us give a rejoinder to this
query.

i. Basic principle of the Algorithm: Suppose an obstacle is detected by a robot
while it is moving toward the goal. Immediately upon detecting the obstacle,
the robot begins to follow the edge of the obstacle. How long does the robot
do so? The robot follows the edge of the obstacle until it reaches a point on
the boundary that is closest to the goal (in the BugO variant). Thereafter, a
resumption of the robot’s movement toward the goal takes place.

ii. Local Sensing of Obstacle and Non-requirement of Complete Environmental
Map: A striking feature of the bug algorithm is that, unlike some other
path-planning algorithms, the bug algorithm does not require a pre-existing
map of the environment. What is the significant advantage of this feature?
The feature makes it suitable for situations where a robot needs to navigate
in unknown or dynamically changing environments. Then the robot relies
solely on local sensor data, like proximity sensors, to detect obstacles. Such
reliance on sensor readings makes it possible to dispense with the need for
a pre-drawn map of the environment. The sensor data is its sole guide.

iii. Variants of the Algorithm: Several variations of the bug algorithm have
been developed. Examples of variants are Bug0O, Bugl and Bug2. These
variants have varying levels of elaborateness, involvement and memory
requirements. They are designed to deal with specific challenges. They
improve algorithm efficiency thereby allowing its adaptation to specialized
needs.

Bug0 variant is the most basic type in the series of bug algorithm versions. In this
variant, the robot simply follows the boundary of the obstacle in one direction.
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It moves in the clockwise direction until it reaches the closest point to the goal.
In the Bugl variant, the robot first completes a full circle around the obstacle. Then
it exits from the location on the obstacle’s boundary that is closest to the goal. In the
Bug? variant, the robot follows the contour of the obstacle but says goodbye to it no
sooner than it can move directly toward the goal along the line connecting the cur-
rent position of the robot to the goal. The Bug0 algorithm does not guarantee that the
robot will reach the goal in all scenarios, whereas the Bugl algorithm does, albeit
at the cost of inefficiency. Bug?2 results in shorter distances of traveling than Bugl.
However, it can be inefficient in some situations. Let us take up the Bugl algorithm.

12.3.2  Steps oF THE BuG1 ALGORITHM

Taking the Bugl version as a case study, let us survey its main steps. The steps of the
Bugl algorithm (Figure 12.2) are as follows (Kurtipek 2020): robot movement, obsta-
cle detection, activation of obstacle avoidance, and following the boundary of the
obstacle (Kurtipek 2020). If the robot does not reach the point on the obstacle bound-
ary nearest to the goal, the obstacle avoidance behavior is repeated. If it reaches that
point, it continues moving toward the goal. At this stage, it is examined whether the
robot has reached the goal. If YES, the algorithm is stopped. If NO, the algorithm
returns to the step from which the robot’s movement started.

i. Movement of the Robot toward the Goal: The robot starts by moving in a
straight line. This line points directly in the direction the intended goal position.

ii. Detection of Obstacle by the Robot: As soon as the robot detects an obstacle
on its path, it initiates the obstacle avoidance behavior built into its machinery.

iii. Movement of the Robot while Following the Obstacle Boundary: The
robot follows the edge of the obstacle in a chosen direction, which is usu-
ally clockwise. The robot continues moving until it reaches the point on the
boundary that is closest to the goal. This persistence of motion ensures that
the robot can move directly toward the goal again.

iv. Storage of the Closest Point to the Goal by the Robot: While following the
obstacle, the robot stores in its memory the coordinates of the point on the
boundary that is closest to the goal. It thus remembers the specific location
on the edge of the obstacle that is located at the shortest distance away from
the goal. The remembrance of this point is necessary for the robot, as it
marks the correct position for the robot to later navigate around the obstacle.
The robot will access it when deciding to leave the obstacle and resume its
straight-line path toward the goal. Hence, this point serves as the departure
point or leave point for the robot.

v. Return of the Robot to the Closest Point to the Goal: Once the robot has
navigated around the obstacle, it recalls the leave point. Thus, it moves back
to the previously stored closest point on the obstacle boundary.

vi. Resumption of Robot Movement toward the Goal: From the closest point,
the robot continues moving toward the goal. The motion persists, and the
robot keeps moving until it encounters another obstacle on the way. Then
the obstacle avoidance steps stated above are repeated.
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FIGURE 12.2 The bug algorithm.

12.3.3  APPLICATIONS OF THE BUG ALGORITHM

The bug algorithm streamlines the daily activities of many types of robots, a few of
which captivate our attention:

i. Robot Vacuum Cleaners: These robots navigate around furniture, other domes-
tic items, or moving persons in a room to reach the desired area to be cleaned.
The furniture, domestic items, and persons act as obstacles to robot movements.
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ii. Warehouse Robots: These robots navigate a passageway in a warehouse
while dodging obstructions like bundles, bags, baskets, containers, and
other packages in the warehouse.

iii. Service Robots: These robots circumnavigate a home environment with
fixed furniture and people. They move around in the home providing the
services to people, e.g., healthcare, hospitality, and logistics.

iv. Autonomous Vehicles Negotiating Complex Environments: These robots
are useful in situations where a full map of the robot’s surroundings is not
available to seek guidance for its locomotion. An example is a robot navi-
gating through a crowded outdoor space.

12.3.4 ADVANTAGES OF THE BUG ALGORITHM

Recognizing and utilizing the advantages of the bug algorithm drive innovation
and progress.

i. Comfort of Comprehension and Application: It is an easy-to-understand
and easy-to-implement algorithm on robots having limited computational
power. Its straightforward nature makes it a good starting point for robot
navigation.

ii. Robustness in Dealing with Unforeseen Conditions: It is capable of han-
dling unexpected obstacles in real time.

iii. Low computational Cost: It does not require computationally intensive and
expensive operations.

12.3.5 DISADVANTAGES OF THE BUG ALGORITHM

Understanding potential disadvantages of the algorithm helps us anticipate problems
well in advance and take proactive steps to avoid them.

i. Non-optimality of Robot Operation: The robot may wander about irregu-
larly. During its dawdling and rambling, the robot may take longer paths
than those obtained by optimal solutions.

ii. Arrogance of Following Boundaries on Getting Stuck in Certain Situations:
The robot gets stuck in some environments. Depending on the obstacle lay-
out, the robot may end up traveling a considerable distance by following
the boundaries of obstacles. Such insistence on adhering to the boundaries
renders the exercise inefficient and futile, making it an unproductive and
wasteful activity.

12.4 VECTOR FIELD HISTOGRAM ALGORITHM

Another algorithm used for path planning in autonomous robotics is the vector field
histogram (VFH) algorithm, a real-time obstacle avoidance algorithm in robotics
(Borenstein and Koren 1991). It is used by autonomous robots predominantly for
local path planning. It differs in approach from the bug algorithms, which follow
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obstacle boundaries until reaching the goal or a point close to it. Unlike the bug
algorithms, the VFH algorithm identifies obstacle-free paths from a polar histogram
of sensor data.

For robot path planning, the VFH algorithm calculates the steering directions
based on sensor data supplied in the form of range readings to navigate around obsta-
cles. The size of the robot and its turning radius are taken into account during navi-
gation. In effect, the robot is securely guided toward a desired target direction while
eschewing collisions with objects on the track.

12.4.1 CHier PoiNTs ABOUT THE VFH ALGORITHM
The main ideas of the VFH algorithm are (Chen et al. 2019):

i. Sensor Input: The algorithm primarily relies on range sensors, such as ultra-
sonic or LiDAR. Using these sensors, the obstacles around the robot are
detected. From the information gathered by its sensors, a realistic represen-
tation of the robot’s environment is evolved.

ii. Data Representation by Histogram: The sensor data is converted into a 2D
polar histogram or density heatmap in which data points specified by their
(x, y) rectangular Cartesian coordinates are grouped into bins in polar coor-
dinates (r, ) where the radius r represents the distance of the data point from
the origin and the angle 6 represents its angle. Such grouping of data points
in terms of radius r and angle @ produces a circular or radial grid. Application
of an aggregation function to each bin, like counting the number of points in
each bin or summing a value associated with each point, produces a density
plot of the data distribution where the color or intensity of each bin represents
the aggregated value. In the 2D polar histogram thus generated, each cell of
the histogram represents a direction and distance from the robot. Hence, it
enables easy visualization of potential obstacles that the robot may encounter
in different directions as it moves toward the goal.

iii. Logic for Obstacle Avoidance: By analyzing the histogram, the algorithm
identifies the directions with minimal obstacle density. These directions are
called openings. Then it performs calculations to find a steering direction
that directs the robot toward the most suitable open space to avoid collisions.

iv. Considerations for Robot Geometry: VFH takes into account the physical
dimensions of the robot and its turning radius. Therefore, the calculated
steering commands are easily abided by the robot to execute its operation.

12.4.2 MAIN Sters oF THE VFH ALGORITHM

The principal steps of the VFH algorithm for autonomous robots are (Figure 12.3):
sensor data acquisition by sensing the environment surrounding the robot using
a range of sensors; creating a polar histogram graphically representing obstacle
density around the robot in polar coordinates that is subdivided into slices (single
wedge-shaped sections of the circular graph in the form of angular sectors or bins
representing specific directions or angles around the robot with the heights of the
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FIGURE 12.3 The VFH algorithm.
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slices showing the likelihood of encountering obstacles in those directions); identi-
fying high-density points in the histogram representing obstacles; recognizing val-
leys, defined as low-obstacle-density areas in the histogram; selecting the steering
direction corresponding to the most desirable valley to avoid obstacles; and moving
toward the obstacle-free target direction (Babinec et al. 2012; Kumar and Kaleeswari
2016; Alagic et al. 2019). If the robot reaches the goal, the algorithm is stopped. If it
does not reach the goal, the algorithm goes back to the stage of acquiring data from
sensors. All these steps are carried out within a two-stage data reduction process to
calculate the desired control commands for the robot, as detailed in point (iii) in the
description of operating procedure given below:

i. Acquisition of Data about the Robot and Its Environment by Sensors: The
robot is equipped with range sensors like sonar or LiDAR. The robot’s
sensors perform an all-round scanning operation to collect distance infor-
mation from the surrounding environment. The information is about any
obstacles to the robot movement present in its neighborhood.

ii. Creation of a Polar Histogram: The range data from the sensors is trans-
formed into a 2D polar coordinate system centered on the robot forming
a polar histogram. Each cell in the histogram represents a direction and
distance from the robot. It corresponds to a specific angle around the robot,
creating a circular view of the surrounding environment. The value in each
cell typically represents the number of obstacles detected in that direction.
It is an indicator of obstacle density in that direction, with higher values
showing the presence of more obstacles.

iii. Detection of Obstacles: The algorithm identifies high-density areas in the
histogram. The high-density areas are the regions in which potential obsta-
cles are found.

a. Data Reduction (Stage A): Obstacle density values in the histogram are
smoothed to reduce noise. Hence, a more continuous representation is
created. This step involves filtering or averaging neighboring cells.

b. Data Reduction (Stage B): The algorithm searches for openings in the
histogram. These are directions with low obstacle density. Valleys in the
histogram are identified, which correspond to directions with minimal
obstacle density. The valley that is closest to the desired target direction
is selected while considering the robot’s current heading.

iv. Calculation of the Steering Command: Based on the identified openings and
the chosen valley, the algorithm calculates the necessary steering angle giving
the direction to navigate the robot toward the obstacle-free path.

12.4.3 VAriIANTS OF VFH ALGORITHM
The basic VFH algorithm has been improved with several variants:
i. VFH*: It is an improved version of VFH algorithm that takes into account

the robot’s physical size and incorporates a cost function for more refined
direction selection. It has additional features such as better handling of
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narrow openings and improved robustness to sensor noise (Ulrich and
Borenstein 1998).

ii. VFH*: It is a further enhanced version of VFH, embellished with addi-
tional considerations beyond VFH", like a look-ahead verification mecha-
nism to anticipate potential future collisions of the robot. Such refinement
of the algorithm provides more reliable robot path planning (Ulrich and
Borenstein 2000).

12.4.4 ArrLicaTiONs OF THE VFH ALGORITHM

The VFH algorithm is primarily used in autonomous robotics for real-time obstacle
avoidance in dynamic environments. It allows the robots to navigate around obstacles
by calculating a preferred steering direction based on sensor readings, particularly
from range sensors like LiDAR or SONAR. The need for detailed environmental
maps is avoided. These qualities make it an ideal algorithm for applications like
mobile robot navigation, cleaning robots, and autonomous vehicles moving in mud-
dled and disarranged spaces.

i. Navigation of Mobile Robots: The VFH algorithm is commonly employed
in mobile robots to navigate environments with numerous obstacles. It helps
by providing steering directions to avoid collisions while reaching a desired
destination.

ii. Controlling the Robots Used for Indoor Cleaning: Cleaning robots utilize
the VFH algorithm to detect furniture, walls, and other obstacles in a room.
The detection of obstacles enables them to maneuver around objects while
cleaning the room efficiently.

iii. Guidance of Autonomous Vehicles in Cluttered Environments: The VFH
algorithm helps autonomous vehicles to navigate around obstacles like
pedestrians, pallets, or parked cars in scenarios such as warehouses or
crowded streets.

iv. Performing Robotic Manipulation Tasks: The VFH algorithm is used for
obstacle avoidance during robotic arm movement for robots engaged in
manipulation tasks. Thus, it prevents their collisions with surrounding objects.

12.4.5 ADVANTAGES OF THE VFH ALGORITHM

Knowing the advantages leads to greater success and positive outcomes when using
the algorithm.

i. Real-Time Processing Capability: VFH is a computationally efficient algo-
rithm. It is designed for fast obstacle avoidance in real-time applications.
The underlying reasons are its quick data reduction process and steering
direction calculation, critical for dynamic environments.

ii. Flexibility of Operation: VFH is adaptable to various robot geometries and
sensor configurations.
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iii. Simplified Practical Realization: The concept of using a histogram for
obstacle representation is relatively straightforward to understand and
implement without difficulty. It can be integrated with various robot control
systems.

iv. Use of Sensor-Based Navigation: The algorithm relies on sensor data. This
advantage makes it adaptable to changing environments without requiring a
pre-built map.

v. Following a Robot-Centric Approach: The algorithm takes into account the
robot’s physical properties in order to proclaim realistic steering commands.

12.4.6 LimitaTioNs OoF THE VFH ALGORITHM

Understanding limitations of the algorithm helps us develop resilience and the ability
to overcome difficulties.

1. Restriction to Local Planning Only: VFH is primarily a local planner,
focusing on immediate obstacle avoidance. It may not lead to the most opti-
mal path in complex environments. It is not designed for long-term global
path planning. Furthermore, it may not always account for the dynamic con-
straints of the robot, such as its maximum turning radius.

ii. Possibility of Becoming Stuck: VFH might not always find a clear path
in complex environments. It gets trapped in tight spaces. It may wiggle
through narrow passages or environments characterized by closely located
obstacles.

iii. Potential for Oscillatory Behavior: VFH might lead to oscillations in tight
spaces as the robot continuously struggles to avoid obstacles.

12.5 GENERALIZED VORONOI DIAGRAM ALGORITHM

Like the VFH algorithm, the generalized Voronoi diagram (GVD) is a crucial mem-
ber of the family of algorithms employed in autonomous robotics for path plan-
ning and obstacle avoidance. While the VFH is a local, sensor-based algorithm, the
GVD algorithm follows a global, graph-based approach. While VFH is a real-time
algorithm, GVD is a pre-planned algorithm. The VFH algorithm is based on an
implicit sensor-based environmental model. The GVD algorithm uses an explicit,
map-based environmental model. The VFH algorithm is less complex. The GVD
algorithm is relatively more complex. The VFH algorithm provides simple naviga-
tion in a dynamic environment. The GVD algorithm is suited to complex navigation
in a static environment.

12.5.1 FuNcTiONAL MECHANISM OF THE GVD ALGORITHM

Let us now explain the functional details of the GVD algorithm. A GVD is a com-
putational geometry structure used in autonomous robotics (Garrido and Moreno
2015; Li et al. 2020; Chi et al. 2022). It is a roadmap that provides all possible
path homotopy classes in an environment containing obstacle regions, offering
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maximum clearance from these regions. ‘Homotopy’ is a concept from topology
(the investigation of the fundamental properties of a robot’s configuration space
and their impact on robot motion planning and control) for the classification of
trajectories that a robot can follow. This classification is done by taking into consid-
eration which paths can undergo continuous deformation into one another without
encountering obstacles. The homotopy classes constitute a way to categorize robot
trajectories based on their ability to be continuously deformed into one another
without intersecting obstacles. Thereby they significantly reduce the search space
for finding a valid path.

The GVD algorithm is a path-planning algorithm that leverages a GVD to navi-
gate a robot through an environment. For smooth robot navigation, it divides an envi-
ronmental space into regions based on the distance to multiple obstacles. Each region
represents the area closest to a specific point, such as a robot’s potential position. The
robot’s shape and movement constraints are duly considered. Not only is the center
point of the robot kept in sight, but also its full geometry and possible orientations.
By keeping an eye on the robot’s center, navigation of non-point-like robots is ren-
dered possible. Therefore, large vehicles or robots with articulated limbs are auto-
matically taken care of. In this manner, the algorithm defines the safe zones for a
robot to navigate through successfully without meeting any obstruction. In brief, the
algorithm accomplishes efficient path planning and obstacle avoidance by creating a
roadmap of safe paths within a complex environment based on the identification of
the safest or most accessible areas and routes with maximum clearance from obsta-
cles, and delineating safe corridors between obstacles, allowing for an efficient and
collision-free movement of the robot.

12.5.2 MAIN Sters oF THE GVD ALGORITHM

A review of the main steps clarifies how the algorithm performs its operation.
Figure 12.4 presents the steps of this algorithm. These steps are (Ozcan and Yaman
2019; Lee et al. 2023): representing the obstacle and building its environmental map,
GVD construction, distance metric selection, Voronoi cell generation, graph produc-
tion, path planning, and deciding about the optimality of the determined path. If the
path found is optimal, the algorithm stops. Otherwise, it reverts back to path plan-
ning and continues unless satisfactory results are obtained. Details of the steps are
given below.

i. Representation of the Obstacle: Obstacles are defined as polygons or other
geometric shapes. Their full extent in the environment is considered.

ii. Mapping of the Environment: The robot builds a map of its environment.
Sensors like LiDAR are used for creating a representation of obstacles.

iii. Construction of GVD: Based on the map, the algorithm calculates the GVD.
The GVD essentially creates a network of interconnected points. This net-
work represents the most accessible paths within the environment.

iv. Selection of the Distance Metric: GVDs utilize a distance metric that takes
into account the robot’s geometry and orientation. Instead of the simple
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FIGURE 12.4 The GVD algorithm.
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Euclidean distance, it often uses the Minkowski distance. The Minkowski
distance, a generalization of several well-known distance measures, is cal-
culated by adding the absolute differences between two points raised to a
power or parameter p. The value of the power, or parameter p determines
the type of distance metric used. Various values of p represent different
distance measures. The p=1 value represents the Manhattan distance,
p =2 gives the Euclidean distance and p = oo, the infinite norm.

v. Generation of Voronoi Cell: The algorithm calculates the set of points closer
to a specific robot configuration than any other. Hence, it creates a Voronoi
cell for each potential robot pose.

vi. Construction of Graph: The boundaries of the Voronoi cells are connected
to form a graph structure. The graph represents the accessible paths within
the environment.

vii. Planning of the Robot Path: After the GVD is generated, the robot uses a
simple graph search algorithm like A* to find the optimal path from its cur-
rent location to the desired goal. The robot navigates along the GVD points
to avoid obstacles.

12.5.3 ArpLICATIONS OF THE GVD ALGORITHM

Applications of the GVD algorithm make routine robot tasks easier. Let us elaborate
on these tasks.

i. Robot Path Planning: Collision-free paths are generated for robots navigat-
ing through environments filled with numerous obstacles.

ii. Robot Motion Planning: Feasible motions for robots with non-holonomic
constraints are calculated. The non-holonomic constraints refer to the
path-dependent constraints on the velocity of a robot’s mechanical system
that are not derivable from position constraints, e.g., those faced with wheeled
robots with limited turning radius.

iii. Exploration of Unknown Environments: The GVD algorithm guides auton-
omous robots to explore unknown environments by identifying areas with
high information gain indicating a more effective splitting of data.

iv. Autonomous Navigation in Indoor Environments: Robots, such as cleaning
robots or delivery bots, can utilize GVDs to navigate around furniture and
other obstacles.

v. Coordination of Multi-robot Teams: The GVD algorithm is utilized to coor-
dinate the movement of multiple robots by providing a shared understand-
ing of the environment, considering their mutual interference and ensuring
safe distances.

vi. Industrial Robotics: The GVD algorithm is used for robot path planning in
manufacturing settings with layouts of various types.

12.5.4 ADVANTAGES OF THE GVD ALGORITHM

The benefits of the GVD algorithm enable better outcomes in robot navigation, giv-
ing it a competitive edge over other algorithms:
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i. Efficient Planning of Robot Path and Selection of Route: The GVD algo-
rithm provides a high-level representation of the environment. Such a repre-
sentation allows for faster path calculation compared to raw sensor data.

ii. Efficient Route Selection: The GVD structure allows for quick identification
of the most accessible paths between start and goal points. The robot’s size
and limitations are taken into consideration, which is an obvious advantage.

iii. Robustness to Complex Environments: The GVD algorithm can handle a
variety of obstacle layouts and is particularly useful for navigating com-
plex environments with multiple obstacles or tight spaces where traditional
Voronoi diagrams may not be sufficient.

iv. Avoidance of Collisions: The GVD algorithm enables efficient path planning
to avoid collisions by identifying the closest point to an obstacle for a given
robot configuration.

v. Flexibility to Different Situations: The GVD algorithm can be easily
adapted to different robot sizes and motion constraints.

12.5.5 LiMITATIONS OF THE GVD ALGORITHM

Limitations of the GVD algorithm are important for ensuring risk avoidance during
its application.

i. Difficulties faced in Dynamic Environments: The GVD algorithm needs to
be recalculated frequently if the environment changes significantly, which
can be a troublesome and tedious activity.

ii. High Computational Cost: Generating a GVD can be computationally
expensive, especially in large or highly dynamic environments.

12.6 DISCUSSION AND CONCLUSIONS

This chapter dealt with the algorithms used for designing autonomous robots
(Table 12.1). The most well-known example of the autonomous robot is the self-
driving robot, a self-sufficient decision-making system which processes data inputs
from various sensors, and models it using DL algorithms (Mogaveera et al. 2018;
Reda et al. 2024). A perception, localization, prediction and decision-making
approach is adopted for path planning and motion control.

A dataset of path following behavior is constructed by manually driving a robot
along steep mountain trails and recording video frames from the camera mounted
on the robot along with the corresponding motor commands (Hwu et al. 2017). This
dataset is used to train a deep convolutional neural network. The neural network mod-
ule, which was mounted on the robot and powered by the robot’s battery, leads to a
self-driving robot that could successfully traverse a steep mountain path in real time.

After consideration of robotic speech, vision, emotional intelligence, robot task
and motion planning, and autonomous robots in the foregoing chapters, all of which
involve a single robot, it is high time now to divert our attention to a collection of
robots working together as a swarm. Union is strength. When robots are organized
as a disciplined team of workers, they can perform tasks involving heavy loads and
toxic substances, thereby preventing many accidents and saving human lives, time,
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TABLE 12.1

Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

1 Summary This chapter described four algorithms used for making autonomous

robots, namely the decision tree, the bug, VFH, and GVD
algorithms. These four algorithms operate with different approaches
to obstacle avoidance and path calculation.

2 Decision tree The general purpose of a decision matrix and the procedure for its

algorithm creation were explained, together with steps in making it, indicating
its advantages/disadvantages. Specialized aspects of a decision
matrix in autonomous robot Al were dealt with. Common Al
algorithms used with decision matrices in autonomous robots are
Bayesian inference, reinforcement learning, and neural networks.
Chief considerations when using decision matrices are complexity
management, examination of unforeseen cases, and the
explainability of the decision-making process. Key elements of a
self-driving vehicle decision matrix, including its decision-making
process and challenges involved, were outlined.

3 Bug algorithm The bug algorithm is a simple, reactive obstacle avoidance strategy
where a robot follows the edge of an obstacle until it can resume its
path toward the goal.

4 VFH algorithm The vector field histogram is a real-time motion planning algorithm
that utilizes a polar histogram to represent the density of obstacles in
different directions, thereby identifying obstacle-free directions for
steering a robot based on sensor data.

5 GVD algorithm The generalized Voronoi diagram algorithm works by partitioning a
space into regions based on proximity to multiple seed points, such
as landmarks and waypoints, for planning a path that finds the most
efficient route around obstacles.

6 Keywords and ideas ~ Decision Matrix in autonomous robot Al and for a self-driving robotic

to remember vehicle, bug algorithm, vector field histogram algorithm, generalized
Voronoi diagram algorithm

and money. The concluding three chapters of the book will explore the opportunities,
prospects, and technical snags of swarm robotics.
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3 Robotic Swarms
Preliminaries

13.1 INTRODUCTION

Hitherto, our attention has been concentrated on the functioning of the single robot, a
solitary machine designed to work independently, diligently, and indefatigably, applying
forces and controlling movements of various forms to perform actions. It is abundantly
clear that a single robot will fail to solve large-scale problems, despite carrying an exten-
sive gadgetry of sophisticated sensors, actuators, and processing electronics. While a
single robot excels in precise, repetitive tasks, tasks distributed over large areas are not
within its domain of implementation. We know that a large group of insects, e.g., bees,
wasps, ants, termites, or locusts, moving together constitutes a swarm. Motivated by the
swarms of gregarious insects observed in natural settings, a robotic swarm is contem-
plated as a large population of simple, small, and inexpensive robots. The robots in a
swarm are its members. The member robots work collectively in a decentralized manner
through local interactions and sensing among themselves and with the environment to
accomplish confounding tasks without access to global information. In a decentralized
system, the control, power, or activities are not concentrated in a single, central author-
ity. Rather, they are distributed among many separate entities or locations.

A few instances of commendable tasks performed by robotic swarms are rescue
missions in times of catastrophe and mayhem, surveillance and defense activities,
warehouse automation, logistics, oil spill response, precision agriculture, and envi-
ronmental monitoring. Swarm robotics is a cohesive strategy to coordinate several
relatively simple robots working collegiately sharing liabilities and accountability. It
can scale up to the inclusion of hundreds or thousands of robots (Sahin 2005).

SINGLE ROBOT vS. ROBOTIC SWARM

Robotic teamwork

Can make many dreams work

Two robot minds are better than one

To finish the job and get the work done

If one robot fails, its partner takes over immediately
And the work progresses uninterruptedly

Some jobs are big, others are small,

Together, robots can do them all.

Due to their simpler design, robotic swarms can be significantly cheaper to manufac-
ture than a single, highly complex robot. Moreover, swarms can adapt to changing
environments and unexpected, often surprising situations more effectively than a single
robot. Additionally, the damage and crippling of one individual robot in the swarm

240 DOI:10.1201/9781032695266-13
This chapter has been made available under a CC-BY-NC-ND International license.


https://doi.org/10.1201/9781032695266-13

Robotic Swarms: Preliminaries 241

has minimal impact on the overall system. Thus, multiple, often simpler robots col-
lectively complete a compound task through coordinated interactions and distributed
intelligence, offering increased adaptability and redundancy. The collective behavior
of the robot swarm duly compensates for the failure of individual robots. Essentially,
a swarm leverages the power of a large number of robots and local communication. It
achieves seemingly impossible and ambitious goals that a single robot might struggle
with. Therefore, from this chapter onward, we shift our focus to swarms of robots in
lieu of the single robot that has been in the spotlight in the foregoing chapters. Swarm
robotics can do wonders and become a game-changer. It is a paradigm-shifter that will
bring a transformative change, leading to improved performance and innovation.

13.2  BIO-INSPIRED ALGORITHMS USED IN SWARM ROBOTICS

Nature is collaborative, with members of a species working together for survival, fully
knowing that union is strength. Collective action and unity build a powerful com-
munity. We can learn valuable lessons from the nature. Therefore, in swarm robotics,
various algorithms inspired by biological phenomena are employed (Hereford and
Siebold 2010). Apart from genetic algorithm (GA), which originates from the process
of natural selection in genetics, these algorithms are mainly derived from a sense of
enthusiasm and excitement that nature provides through the collective behaviors of
animals like birds, bees, ants, etc. The motive of all these algorithms is to solve tortu-
ous problems by coordinating a large group of robots with simple rules. The coordi-
nation compels them to work in an interwoven and integrated fashion for achieving
their pursued outcome (Bhowmick et al. 2024).

Each algorithm mimics the collective behavior of a natural swarm. The connotation
of word ‘mimicking’ can be negative depending on the context and intent. So, let us clar-
ify. ‘Mimicking’ here is not done for mocking but as a part of the learning process. This
caricature is not any playful or derisive attempt but a respectful, solemn, and praisewor-
thy activity for a beneficial purpose. It is called biomimicry. It is the science of learning
from nature, imitating natural processes, and emulating natural ecosystems to create
more sustainable and efficient solutions to real-world challenges faced by humans. It is
a powerful approach to designing swarm robotics methods, building upon the principles
of collective intelligence and the behaviors of natural swarms. Biomimicry draws its les-
sons from nature’s solutions to problems, encouraging a hands-on, experiential approach
that fosters creativity and deeper understanding. Through billions of years of evolution,
nature has developed incredibly effective ways to address various types of problems,
and we, too, can gain from this expert knowledge base gifted by nature. Sustainability
is a cardinal ingredient and the lifeblood of this knowledge base because nature works
in ways that meet the demands, necessities, and exigencies of the present generation
without compromising the needs of future generations.

In a natural-like swarm, the individual robots make local decisions like ants or
bees based on limited information. Such local decisions translate for culmination into
an emergent global behavior. These algorithms are often used to optimize numerous
tasks, e.g., activities of path planning, target searching, foraging, and obstacle avoid-
ance within a swarm of robots. A few commonplace examples of these algorithms
are given in Figure 13.1. The diagram shows a swarm of robots and conscripts the
seven bio-inspired swarm robotic algorithms as given below:
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FIGURE 13.1 Examples of algorithms for swarm robotics that are developed by inspiration
from biological phenomena.
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1. Genetic Algorithm: The GA is a computational method. It is used to opti-
mize the behavior of a group of robots by mimicking the principles of
natural selection. In this algorithm, the robot’s behaviors are represented
as chromosomes containing parameters defining its actions. The actions
are movement patterns, decision-making rules, or sensor interpretations.
The best robot behaviors are selected, combined, and mutated to produce
improved behaviors for the swarm over time. Thus, the robots can collec-
tively solve complex tasks more effectively (Wahab et al. 2024).

ii. Particle Swarm Optimization (PSO) Algorithm: It is a pivotal algorithm
for searching for plans of action to achieve the desired results in swarm
robotics. The inspiration for this computational model is sparked by bird
flocking. The flocking of birds is their instinctive behavior to fly together
in formations for finding food and staying safe from predators. In this algo-
rithm, the particles representing robots move toward the best solution found
by the swarm (Hereford et al. 2007; Zhang and Wang 2024).

iii. Ant Colony Optimization (ACO) Algorithm: This algorithm is formulated
by the inspiration received by humans from observation of the ant colony
behavior. Ants are known to lay down pheromone trails to indicate opti-
mal paths between their nest and food sources. Pheromone is a chemical
signal. It is secreted by a species to elicit a particular behavioral response
from other individuals of the same species. So, subsequently, moving ants
use these pheromone trails to tread the paths defined by their predeces-
sors when finding the shortest route. Hence, by following the pheromone
trail laid down by previously searching ants, their new colleagues can easily
reach the food sources. In the ACO algorithm, the robots are considered as
the artificial ants that iteratively build solutions by choosing paths based on
pheromone levels (Sharan et al. 2023; Lingkon and Ahmmed 2024).

iv. Artificial Bee Colony (ABC) Algorithm: It emulates the foraging behavior
of honeybees to collect nectar and pollens from blooming plants; nectar is a
sugary liquid while pollens are powdery substances. The algorithm is mod-
eled after the fascinating world of honeybees, which is depicted as compris-
ing different bee types, namely employed, onlooker, and scout bees. These
bee classes search for food sources with distinct roles assigned to different
classes. In this distribution of labor, the employed bees exploit local food
sources. The onlooker bees choose food sources according to the quality of
the material. The scout bees wander about exploring and looking for new
areas of food sources (Izaguirre et al. 2021).

v. Firefly Algorithm (FA): It is based on the social behavior of fireflies, the
so-called lightning bugs or beetles belonging to the family Lampyridae,
which originates from the Greek word ‘lampein’, purporting ‘to shine’. The
individual fireflies move toward their brighter associates, representing bet-
ter solutions in the optimization problem. Drawing an analogy from this
movement, the robots mimic the flashing behavior of fireflies, with isolated
robots migrating toward brighter fireflies, which represent better solutions.
The brighter the firefly, the greater is the emphasis on attraction and conver-
gence toward optimal points (Chaudhary et al. 2024).
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vi. Bacterial Foraging Optimization (BFO) Algorithm: It models the movement
and chemotaxis behavior (movement toward nutrient gradients) of bacteria
in search of nutrients. Chemotaxis focuses on local search with occasional
global exploration through repel and swim phases, allowing for a more thor-
ough search in intricate environments (Hossain and Ferdous 2015). ‘Local’
relates to a particular place or area, while ‘global’ refers to a wide area.

vii. Salp Swarm Algorithm (SSA): It is a computational optimization technique
inspired by the natural swarming behavior of barrel-shaped, gelatinous
marine animals related to vertebrates. The algorithm closely follows the
behavior of salps to form chain-like structures while foraging to solve com-
plex problems by iteratively updating the positions of salp agents within
a search space. During this process, a designated leader salp guides the
swarm toward the optimal solution. Essentially, it is a swarm intelligence
method leveraging the coordinated movement of salps to explore and exploit
a solution space effectively (Cheng et al. 2022).

Five noteworthy features of swarm robotics algorithms are underscored. These are
their simplicity of approach, scalability to any population size, along with capabili-
ties for decentralization (low-cost communication between agents without the ser-
vices of a central coordinator), localization (local communication and interaction),
and parallelism (breaking down resource-intensive tasks into smaller parts to be
executed concurrently for simultaneous solution) (Tan and Zheng 2013).

13.3 GENETIC ALGORITHM

The GA is an algorithm used to optimize the behavior and decision-making of
robots in a swarm akin to the evolutionary approach in biology following the natu-
ral selection process (Rezk et al. 2014; Bahaidarah et al. 2023; Zhu and Pan 2024).
The ‘swarm’ suggests a population of robots in which each robot has its own set of
parameters that can be modified through the GA. Each robot in the swarm represents
a potential solution. The parameters of the robots, called genes, are adjusted on the
basis of their performance in the environment, favoring the fittest robots to produce
better future generations. Through such adjustments, the best solutions for a given
task are identified, for example, in robot navigation within a complex environment
or robot movement coordination within a swarm. The algorithm proceeds by itera-
tively improving the parameters called traits of the robots, controlling their actions.
Operations like selection, crossover, and mutation in genetics are performed.

13.3.1  OpPEerATORS IN A GA

These operators, called genetic operators, are defined as (Lamini et al. 2018):

i. Selection: This operator chooses the best-performing robots to pass on their
traits.

ii. Crossover: This operator combines traits from selected robots to create new
offspring.
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iii. Mutation: This operator randomly alters specific traits of robots to intro-
duce diversity in the exploration of the solution space.

Figure 13.2a illustrates the vital operations performed in a GA: initialization, selec-
tion, crossover, mutation, and replacement. In the initialization step, three samples
are taken: 000, 111, 222, from which two samples are selected: 000, 111. In the
crossover step, 00 from 000 and 1 from 111 are taken to form 001, which is mutated
to 011. This mutated sample is supplied to the replacement step, which feeds it back
to the selection step.

13.3.2 BRreakpOowN OF THE KEey Steps IN GA

The steps are framed by studying genetics in biology and concepts like heredity,
selection, and mutation. When using a GA to optimize a robot swarm, the key steps
are (Figure 13.2b): initializing a population of robot behaviors by representing
potential solutions as chromosomes, evaluating the fitness of each behavior based
on the swarm’s performance in the task, selecting the best-performing behaviors
for reproduction, applying genetic operators like crossover and mutation to gener-
ate new behaviors. It is checked whether the newly generated population represents
a satisfactory swarm behavior or meets the stopping criterion. If YES, the process
is stopped. If NO, it reverts to the step of calculation of fitness function, repeating
this process until a satisfactory swarm behavior emerges. These steps essentially
simulate natural evolution to find the most efficient collective behavior for the robot
swarm (McKee 2024).

i. Initialization of the Robot Population: A diverse initial population of robot
behaviors is created. Each behavior is represented as a chromosome char-
acterized by parameters like movement patterns, sensing strategies, com-
munication protocols, etc. The representation is done randomly or using
heuristics based on the problem domain, the specific field, phenomenon or
discipline where the problem exists.

ii. Evaluation of Fitness: The robot swarm is simulated in the environment
using the individual behaviors of robots from the population. The perfor-
mance of the swarm is measured based on the desired task, e.g., coverage,
foraging efficiency, and obstacle avoidance. A fitness function is used for
measurement. It is a function that assesses the performance of each robot
based on the task at hand. A fitness score is assigned to each behavior based
on performance. The score determines which robots are more likely to be
selected for reproduction.

iii. Selection (Genetic Operator): The best-performing behaviors having high
fitness scores are selected from the population to be used for reproduction.
Methods like roulette wheel selection, tournament selection, or elitism are
applied. The roulette wheel or fitness-proportionate selection assigns a
probability of selection to each individual based on the fitness of that indi-
vidual relative to the total fitness of the population. Tournament selection
randomly selects a small group of individuals from the population, with



FIGURE 13.2  Genetic algorithm: (a) principal operations and (b) the algorithm.
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the fittest individual within that selection chosen for reproduction. Elitism
is a scheme in which the best individuals from the current generation are
directly copied to the next generation.

iv. Crossover (Genetic Operator): The genetic information from selected par-
ent behaviors is combined to create new offspring behaviors. Variations are
generated by swapping parts of chromosomes or mixing parameters.

v. Mutation (Genetic Operator): Certain parameters of the new offspring’s
behavior are randomly modified to introduce diversity for exploring the
solution space.

vi. Replacement: The lower-performing behaviors in the population are
replaced with the newly generated offspring.

vii. Iteration: The steps of fitness evaluation, selection, crossover, mutation, and
replacement are repeated. The repletion is done until a satisfactory swarm
behavior is achieved or a stopping criterion is met.

13.3.3  ArpLicaTiONs OF GA

To appreciate the significance and relevance of GAs in swarm robotics, we highlight
a few applications of the algorithm as follows.

i. Planning of the Robot Paths: The movement paths of robots are optimized
within a swarm so that they can navigate vexing environments efficiently.
ii. Controlling the Desired Robot Formation within a Swarm: The desired for-
mations of robots, like a line or a circle, are maintained within a swarm. For
their maintenance, the movement patterns of individual robots are adjusted.
iii. Coordination of Multiple Robots for Performing Cooperative Tasks: The
actions of multiple robots are coordinated to achieve a collective goal. The
goal could be collaborative manipulation of an object.

13.3.4 AbvanTtaGes oF GA

When using GAs to control robot swarms, the main advantages include their ability
to find near-optimal solutions in entangled environments, explore a wide range of
potential behaviors, and adapt to changing conditions. The advantages are:

i. Exploration of Diverse Solutions and Exploitation of Best Solutions: GAs
effectively search through a vast space of possible robot behaviors. The
search allows for exploration of diverse solutions. It also allows exploitation
of the best ones. Both benefits are necessary for involuted swarm tasks.

ii. Adaptation to Changing Environments: The swarm adapts its behavior
dynamically to changing environmental conditions. This becomes possible
by incorporating evolutionary mechanisms, such as mutation and crossover.

iii. Robustness of Algorithm toward Noise: GAs can withstand noise and toler-
ate uncertainties in the environment. These advantages make them suitable
for real-world robot swarm applications.
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iv. Design Flexibility: The design of a GA can be tailored to specific swarm
tasks. This is achieved by adjusting the representation of robot behaviors,
specifically the chromosome encoding and fitness function.

v. Emergent Behavior: The individual robots are allowed to evolve based on
their local information and interactions with the swarm. Hence, complex,
collective behaviors can emerge without explicit centralized control.

13.3.5 LimitatioNs oF GA

Principal limitations of GAs include potential for premature convergence, sensitivity
to parameter tuning, and high computational cost associated with large populations,
especially in real-time scenarios. These, along with the other limitations, are:

i. Premature Convergence of the Algorithm: In some cases, the GA may con-
verge prematurely to a local optimum. Then it misses potentially better
solutions in the search space.

ii. Challenges of Parameter Tuning: The performance of a GA heavily depends
on the proper tuning of parameters like population size, mutation rate, and
crossover rate. Parameter tuning is often a bothersome activity.

iii. High Computational Cost: Evaluation of the fitness of a large population of
robot behaviors is computationally expensive. Real-time applications with
many robots are costly.

iv. Difficulty of Interpretation: It is sometimes difficult to comprehend the
behaviors evolved by a GA. Interpretation is not straightforward when deal-
ing with complex swarm dynamics.

v. Concerns of Scalability: Management of the communication and computa-
tion required for the GA becomes highly complex when there are a large
number of robots in a swarm.

13.4 PSO ALGORITHM

From the Darwinian evolution-based GA, we move to the PSO algorithm based on
the social behavior of birds/fishes. Both are population-based algorithms. But while
GA follows the evolution of species, the PSO algorithm works using swarm intel-
ligence. While GA is good and robust for complex problems, the PSO algorithm is
easily implemented and converges fast. Both are prone to local minima. A detailed
comparison is deferred for a later discussion.

To introduce the PSO algorithm, we consider an organization comprising a group
of robots engaged in a mission. Then the robots in this group constitute a robotic
swarm. These robots interact with each other and with their environment using
a metaheuristic optimization algorithm as the core mechanism. The algorithm is
referred to as the PSO algorithm. The term ‘metaheuristic’ is a combination of two
words. It is a combination of the Greek prefix meta (meaning ‘beyond’ in the sense of
high level) with heuristic (meaning ‘search’), which implies a higher-level search pro-
cedure. In the PSO algorithm, the robots seek out the best feasible answer to any dif-
ficult problem faced by the group by addressing it collaboratively among themselves.
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This problem could be regulating and organizing the movements and activities of the
individual robots within the robotic cluster. The problem is solved by modifying the
relative locations of participating robots and scheduling the actions to be done by
them, making use of the collective intellect of the swarm. Figure 13.3a illustrates the
particle movements in the PSO algorithm. Four positions of the particle are marked:
its current, personal best pbest, global best gbest, and new positions. The three veloc-
ities of the particle are represented by respective vectors, which are arrows pointing
in their respective directions. These velocities are: its current velocity, velocity based
on personal best performance, and velocity based on global best performance. The
continuous lines indicate the tendencies of particle motion, while the dashed lines
indicate how the particle is carried away under the influence of these tendencies.

13.4.1 PARTICLE REPRESENTATION OF ROBOTS

How does the PSO algorithm represent and treat robots? The PSO algorithm
espouses a particle representation of robots wherein each robot is treated as a sepa-
rate particle. The position of the robot e.g., a robot’s location in a navigation task,
represents a potential solution to the optimization issue. The PSO is classified as
a stochastic search strategy. It is a problem-independent method using randomness
for search-space exploration. As opposed to the precise input-based deterministic
techniques, it incorporates randomness and uncertainty. It functions on the iterative
interaction of each particle that forms the swarm (Hamami and Ismail 2022). Its
working mechanism involves regularly updating the relative positions of a swarm of
particles from one iteration to another. This process of updating buoys up and sup-
ports the PSO algorithm to execute the search in the best possible way (Gad 2022).

13.4.2 SwARM INTELLIGENCE AND THE IDEA OF FITNESS FUNCTION

Swarm intelligence is the fundamental mechanism underlying the PSO algorithm.
Duplicating the organized movements of birds in a flock that congregate to forage
and travel conjointly; and on similar lines to fish schooling, e.g., a group of fish mov-
ing together in the same direction at the same speed; and in consonance with human
social behavior of interaction, cooperation, and conflict; each robot in the swarm
communicates with other robots in the group to share information about its current
position and the best solution. Such inter-robot communication influences the move-
ment of the entire group of robots, leading toward a better overall outcome.

The swarm intelligence enables the robot to change its movement based on its
earlier performance as well as the performance of other robots in the swarm. A fit-
ness function is defined keeping an eye on the desired goal for directing the swarm
toward the optimal answer. The fitness function is an objective function that defines
the objective of the problem in relation to its constraints. It is used as a figure of
merit summarizing the closeness of the designed solution to the target. It determines
the quality of the potential solutions regarding the position of the robot. The quality
ratings are expressed by assigning scores that guide the algorithm on the way to an
optimal solution.



FIGURE 13.3 The PSO algorithm: (a) particle movements and (b) portrayal of the procedures of the particle swarm optimization algorithm by break-

ing down into discrete steps in the algorithm workflow.
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13.4.3 Verocity UPDATES

The PSO algorithm works by velocity updating. It blends together the local search
methods with global search methods. It advances with the notion that the most effec-
tive method of conducting the search is to follow the particle that is nearest to the
best position, which means the position in the search space that represents the most
excellent solution found so far. It is usually called the global best (gbest) position.
The ‘gbest’ attribute indicates that it is the best position discovered by any particle
within the complete swarm.

Each particle maintains a record of its own best position encountered thus far.
This is known as personal best (pbest) position. For determining the best position,
the position of each particle is evaluated as found from the fitness function. Then, the
position with the highest fitness value is deemed the best position.

The algorithm utilizes velocity updates during its operation. During each itera-
tion, each robot updates its velocity. The basis of updating is its current position, its
best previous position pbest, and the best position found by the whole swarm gbest.
The aim is to ascertain the required motion of the robot to make headway toward
progressively better solutions.

13.4.4 Steps ofF THE PSO ALGORITHM

The working procedure of the algorithm becomes evident by learning about its step-
wise progress. Figure 13.3b depicts the principal steps of the PSO algorithm. The
algorithm begins with the initialization of algorithm constants, setting #=1, and the
initialization of particle positions and velocities. Fitness function calculations are
followed by velocity calculations for each particle. The particle’s velocity and posi-
tion updating come next. If the stopping criteria are met, the algorithm stops. If not,
iteration =1+ 1 is done by returning to the fitness function determination. Further
details of the workflow of the algorithm are (Market Brew™ 2025):

i. Initialization of Algorithm by Considering a Population of Particles and
Randomly Assigning Positions and Velocities to Them: Every particle in
the population has its position and velocity initialized with values selected
arbitrarily.

ii. Calculation of Fitness Value of Every Particle by Evaluation of Its Objective
Function: For each particle, a calculation of the objective function is done to
estimate its fitness value at the current position.

iii. Mathematical Determination of Particle Velocity: The velocity of each par-
ticle is calculated on the basis of its current position, its best previous posi-
tion (pbest), and the best position found by the entire swarm (gbest).

iv. Updating the Particle Velocity: The velocity of each particle is modified.

v. Amendment of Particle Position: The position of each particle is revised
using its new velocity value.

vi. Checking for Fulfillment of the Stopping Criteria for the Algorithm: A
scrupulous comparison of objective functions calculated using updated
positions is made with objective functions reckoned through old positions.
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In case no noticeable improvements in consecutive objective function val-
ues are found, a cessation of the process is warranted.

vii. Process Repetition: If the updated positions improve the objective function
values, the process is repeated until arrival at the stopping criterion.

13.4.5 ArpLicaTIONS OF RoBoTIC PSO ALGORITHM

Robotic PSO is applied to carry out varied responsibilities in dealing with robots
engaged in teamwork:

i. Planning and Organization of the Path of Robot’s Journey: Since the most
effective path must be found while avoiding any obstacles or barriers, mov-
ing several individual robots through a complicated environment requires
careful optimization to find the most efficient route to the destination.

ii. Cooperative Control and Manipulation of Several Robots: When a multi-
plicity of robots is involved in grasping and manipulating objects together,
their motions and actions must be properly coordinated with accuracy.

iii. Optimization of Sensor Network: In a sensor network for robots, the choice
of the positions of placement of sensors is made keeping in view that the
largest feasible coverage area is accounted for. At the same time, the network
communication expenses must be cut down to the lowest level. Therefore, a
trade-off process is performed for achieving the desired outcome by com-
promising between the sensor positioning plan and the consequent commu-
nication expenditure.

iv. Performing Search and Rescue Activities: A squad of robots must be prop-
erly coordinated to ferret out designated targets through an expansive area.

13.4.6 ADVANTAGES OF THE PSO ALGORITHM

The primary benefits of the PSO algorithm include its simplicity, ease of use, robust-
ness to parameter changes, computational efficiency, and the ability to search an
extremely vast solution space effectively. These assets make it suitable for a broad
spectrum of optimization problems. Fewer tuning parameters in the PSO algorithm
need to be adjusted compared to other optimization techniques.

i. Simplistic Idea and Easy Execution: The central idea of the PSO algorithm
is easily comprehended and implemented, making it accessible to a broader
audience.

ii. Fewer Parameters/Settings to Adjust: Rivaled against other optimization
algorithms, the PSO method usually requires a smaller number of param-
eters to be tuned, thereby enormously simplifying the process of setting up
the algorithm.

iii. Good Capability of Global Search: The PSO algorithm can effectively
explore a vast search space. Premature convergence to local optima is
averted.
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iv. Rapid Convergence of Algorithm: The PSO algorithm exhibits rapid conver-
gence to a near-optimal solution when the parameters are carefully tuned.

v. Adaptability for Compliance with Different Problem Domains: The PSO
algorithm can analyze a variety of optimization problems spanning multiple
domains, including those from finance, engineering, and machine learning
fields.

vi. Potentiality for Parallel Processing: The particle-based nature of the PSO
algorithm makes it capable of easy parallelization to achieve faster compu-
tation on multi-core processor systems.

13.4.7 DirricuLties FACED DURING RoBoTic PSO UsAGE

Awareness about the limitations of the algorithm warns us not to venture into areas
where we are likely to encounter trouble of some kind or another. The following are
the problems encountered when using the PSO algorithm:

i. Tuning of Algorithm Parameters: The three main parameters in the PSO
algorithm are the inertia weight (w), the cognitive coefficient (c,), and the
social coefficient (c,). The inertia weight w-value determines the extent
of retention of the previous velocity of a particle. Thus, it strikes a bal-
ance between local and global exploration. The coefficient ¢, is a mea-
sure of the influence exerted on a particle by its own best position. The
coefficient ¢, determines the extent of influence exerted on a particle by
the best positions of its neighboring particles. The performance of the
PSO algorithm is critically influenced by the choice of these parameters.
Therefore, the appropriate selection of these is essential to achieve satis-
factory results.

ii. Avoidance of Inter-Robot and Robot-to-Obstacle Collisions: Robot-to-robot
collision as well as collisions of robots with any obstacles during their
motion in the environment should be unfailingly prevented. In particular,
the caution against collision is an issue of paramount importance when
dealing with an environment that is highly densely inhabited with robots.

iii. Overhead for Communication: Establishment and maintenance of commu-
nications in large swarms of robots is not only a formidable job but demands
an exorbitant expenditure in computational overhead.

13.5 ACO ALGORITHM

Like the PSO algorithm, following bird flocking and better suited for continuous
optimization, the ACO is also a swarm intelligence technique copying the ant for-
aging behavior for food, and is suitable for combinatorial problems. The ACO is
an important technique for swarm optimization that was introduced in the early
1990s (Blum 2005; Brand et al. 2010). It is used for the planning of robot routes
for the purpose of autonomous control and navigation of robot manipulators under
dynamic conditions. Let us peek inside the society of ants to get knowledge about
its organization.
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13.5.1 EusociAL BEHAVIOR OF ANTS

Ants are essentially eusocial insects that live in colonies with only some individuals
capable of reproduction. Their primary eusociality traits are:

i. Cooperative Brood Care: This kind of parental care implies a social system
in which the offsprings of a colony are attended by ant members other than
their biological parents who reproduced them. In this system, individual
ants contribute to raising the young of multiple generations. These genera-
tions are not necessarily the offspring of the caretaker ants personally.

ii. Overlapping Generations within a Colony of Adults: This social structure
features the typical characteristic of the simultaneous coexistence of mul-
tiple adult generations within a colony. Hence, young adults are present
alongside older adults, resulting in a mixed population.

iii. Division of Labor into Reproductive and Non-reproductive Groups: An ant
colony functions as a superorganism partitioned into specialized castes.
The castes named as workers, soldiers, queens, etc., perform different roles
and undertake various responsibilities. Within a colony, certain individuals,
generally a queen, solely bear the burden of reproduction. Other members
of the colony are allocated tasks in a dedicated format, such as duties of
foraging, defense, and nurturing the young.

13.5.2 THe WORKING PriNcIPLE OF THE ACO ALGORITHM

It is interesting to note that it is a metaheuristic algorithm. As already mentioned, a
metaheuristic algorithm is a systematic problem-solving procedure in computer sci-
ence that proceeds by imitating natural intelligent phenomena, following an instinc-
tive yet methodical approach. For the ACO algorithm, this approach originates from
the experience gained through observation of the tiny ants using their pheromone
trails to communicate with each other in a self-organizing process. The pheromone
trail is a chemical scent left by ants on their paths to food sources, nests, and other
stopping places. Leaving this trail is a part of the foraging behavior of ant colonies. A
natural consequence of this characteristic is the emergence of a combined, intelligent
behavior among ant colonies.

The inception thought underlying the ACO algorithm is to seek the assistance of
the pheromone trail laid down by ants during their search for food. Other members of
the ant colony use this trail to establish communication among themselves. It marks
an opportune path on the ground for other members of the colony to follow, as it is
the shortest route to their source of food (Blum 2005; Dorigo et al. 2006; Dorigo and
Stiitzle 2019). Hence, it becomes a path-guiding aid to direct the incoming members
of the ant colony. These members have to simply adhere to the pheromone path, pre-
venting the unnecessary repetition of exploratory efforts that their coworkers have
already done. Figure 13.4a shows two possible paths for ants to tread upon between
their nest and food. Figure 13.4b shows one way in which the ants move from their
nest to food along path X and return to their nest along Y. Figure 13.4c shows the



FIGURE 13.4 The ant colony optimization algorithm: (a)—(d) ant movements and (e) the algorithm.
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shortest path pursued by ants from their nest to food. Figure 13.4d shows the shortest
path followed by ants to return from food to their nest.

The ACO algorithm for robots follows a similar approach to ants in finding the
optimal solutions to problems. It is a favorite and eligible choice for solving opti-
mization problems across multiple realms through various fields that were hitherto
difficult to decipher by routine methods.

The ACO is a probabilistic technique integrating randomness and uncertainty
notions. In this technique, artificial ants are employed to solve computational prob-
lems. Good paths are prescribed by taking the help of graphs. The ACO algorithm
works as shown in Figure 13.4e along the track: initialization, setting ¢ = 1, construc-
tion of solutions by ants, and updating of pheromone trail. If the termination condi-
tion is satisfied, the algorithm stops. If not, we set r=7+ 1 and return to constructing
solutions by ants.

i. Transformation of the Optimization Problem into a Weighted Graph: The
goal of this conversion of the problem into a graphical format is to find the
shortest path to the destination.

ii. Construction of a Solution by Each Ant: Each ant randomly constructs a
solution to the problem. This solution specifies the order in which the edges
of the graph are to be traversed.

iii. Path Comparison: The paths found by the various ants are mutually
compared.

iv. Updating the Pheromone Levels: The pheromone levels are made up-to-date
on each edge of the graph according to the fresh findings.

13.5.3 Sters oF THE ACO ALGORITHM

The ACO algorithm is a multi-stage process consisting of the following steps (Fresco
Innovation Labs 2023):

i. Initialization of the Algorithm: The algorithm commences its chain of
events by generating a colony of artificial ants. These ants have no idea
about the problem they are supposed to solve. Quite randomly, they engage
themselves in their search for food. In this search process, each ant travels
over the solution space. During its movement, the ant creates candidate solu-
tions. A combinatorial optimization problem (COP) ensues. A model of the
COP is defined in the form of a triplet (S, Q, ). In this notation, S denotes a
search space, which is defined over a finite set of discrete decision variables.
The symbol Q stands for a set of constraints applied to the variables. The
symbol f connotes an objective function that is to be minimized while solv-
ing the problem.

ii. Construction of Solutions by Ants: In this step, each ant constructs its own
solution. It does so by applying a probabilistic rule. The rule allows the ant
to choose the next point in the solution space. Obviously, the ants prefer
paths with higher concentrations of pheromone. So, the probability that an
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ant moves to the next point is determined by the amount of pheromone
dumped by the previous ants on that specific path.

Mathematically speaking, a set of m artificial ants constructs solu-
tions from elements of a finite set of available solution components C {c;}.
A solution construction starts with an empty partial solution s”=@. Then,
at each step, the current partial solution s? is extended. The extension is
achieved by adding a feasible solution component from the set of feasible
neighbors N(s?) C C. As already stated, the choice of a solution component
from the set N(s?) is done probabilistically at each step. The probability that
an ant k located in node i will choose to move to another node j is given by
the equation (Blum 2005)

Ting
tinh
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plcils”)= (13.1)
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where 7;; is the amount of pheromone deposited for transition from state i to
J» a >0 is a parameter to control the influence of 7, On ants, 7, is the desir-
ability of state transition ij, the heuristic value associated with the compo-
nent ¢;; and #> 1 is a parameter to control the influence of 7. The symbols
7, and 7, represent the trail level and attractiveness for the other possible
state transitions. The trail level represents the pheromone concentration,
while attractiveness is the a priori assessment that represents the extent to
which a path is considered appropriate. It is based on factors like distance or
cost. The values of positive real parameters @ and § determine the relative
importance of pheromone versus heuristic information.

iii. Updating the Pheromone Trail: The pheromone trail is updated after all ants
have constructed their solutions. The amount of pheromone deposited on a
particular edge is a function of the quality of the solution constructed by the
corresponding ant. The pheromone level is raised if the solution is good;
otherwise, the pheromone level is lowered. In other words, pheromone
update increases the pheromone values associated with good solutions and
decreases those that are associated with bad ones. The increase or decrease
of pheromone is accomplished by:

a. increasing the pheromone levels associated with a chosen set of good
solutions, and
b. decreasing all the pheromone values through pheromone evaporation.
The equation used is (Dorigo et al. 2006)

T (-p)ry+ Y, At (13.2)

where 7, is the amount of pheromone deposited for a state transition ij, p is
the pheromone evaporation coefficient, m is the number of ants, and Aﬂj is
the amount of pheromone deposited by kth ant; it is given by
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AT,-’;» = Q/L, if the ant k uses the curve jj in its journey; A‘L'i']‘- = 0 otherwise

iv.

(13.3)

where L, is the cost of the kth ant’s tour (typically length) and Q is a constant.
Cessation of the Algorithm: The aforesaid steps are cyclic. The calcula-
tions are repeated by the ACO algorithm until the optimal solution is found.
As the iteration continues, the quality of the solution shows improvement.
The iteration terminates when either the optimal solution is found or a pre-
defined number of iterations are reached.

13.5.4 ArppLicAaTIONS OF THE ACO ALGORITHM

The ACO algorithm has found widespread application in solving various complex

optimization problems. Its common applications are briefly described below:

i.

ii.

1ii.

iv.

Robots as Substitutes for Unavoidable Engagements of Workers in
Hazardous Conditions: In many dangerous situations, using robots is advis-
able, e.g., robots are successfully deployed when the environment is dirty,
hazardous, likely to cause death or injury to workers as in case of mining,
or during detection of leakage in gas pipe, etc. (Joshy and Supriya 2016).
The Traveling Salesman Problem (TSP): A salesman travels to different cit-
ies. The TSP problem involves finding the shortest possible path for the
traveling salesman to visit all cities and return to the starting city.

The Vehicular Routing Problem: This problem involves determining the
optimal route for a vehicle that visits several locations, taking into consider-
ation the constraints, e.g., time windows, vehicle capacity, and related crite-
ria. Numerous investigations have been carried out to solve this problem.
The Knapsack Problem: It is a classical optimization problem. In this prob-
lem, a specific weight of objects is placed in a knapsack (backpack) to maxi-
mize profit or value. The algorithm is used to solve the knapsack problem
subject to different constraints. It is a combinatorial problem of selecting
a subset of items having weights and values to fit into the container with a
maximum capacity, with the intent to maximize the total value.

13.5.5 ADVANTAGES OF THE ACO ALGORITHM

A few advantages of the ACO algorithm are worth mentioning. These guide us to
make a suitable choice from the list of available algorithms that will be most effective

for a given swarm robotic problem.

i.

Availability of a Fast-Processing Scheme: Optimal solutions for complex
problems are effectively searched in a shorter time period using the ACO
algorithm than possible by traditional methods.
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ii. Pursuit of a Metaheuristic Approach: It is basically a metaheuristic approach
applied to solve various optimization problems. The metaheuristic feature
makes it an attractive choice for handling any optimization problem.

iii. Easy Implementation and Maintenance Capabilities: It is easily imple-
mentable, maintainable, and refinable with updates. Therefore, it demands
a comparatively lesser number of iterations to attain convergence in opposi-
tion to the orthodox complex methods.

iv. Provision of an Efficient Solution: Good-quality solutions to optimization
problems are efficiently determined using the ACO algorithm at a faster
speed than other algorithms. The appreciably shorter computation time
required to run the algorithm is a significant benefit of the method.

13.5.6 DiSADVANTAGES OF THE ACO ALGORITHM

Knowing about the disadvantages of the algorithm is just as important as learning
about its advantages, as they inform us about potential sources of errors and situa-
tions where algorithmic analysis is prone to failure. The prominent drawbacks of the
ACO algorithm are:

i. Instability of Algorithm Performance: The algorithm’s performance
becomes unstable with an increase in problem size. So, it may not pro-
vide the best solution for larger problem sizes. The hindrance to arriv-
ing at the best solution occurs when time runs out while trying different
combinations.

ii. Dependency on Parameter Fine-Tuning: Several parameters must be
fine-tuned in difficult problems to arrive at optimal results. Then, multiple
time-consuming iterations of the algorithm are obligatory.

iii. Indispensability of a Large-Scale Memory: Various probabilities are
involved in the calculation of the next state. Therefore, a large-scale mem-
ory storage is necessary to store the data.

13.6 DISCUSSION AND CONCLUSIONS

Swarm robotics, with its small, agile robots, opens up new possibilities owing to its
scalability, robustness, and parallel processing capabilities. Researchers are develop-
ing sophisticated, decentralized control algorithms inspired by biological behaviors.
These algorithms allow swarms to make collective decisions without relying on a
central leader. They make them more robust to failures and adaptable to changing
environments. Three ground-breaking algorithms, the GA, the PSO, and ACO algo-
rithms, were treated in this chapter. Table 13.1 gives an overview of the discussions
in Chapter 13. The succeeding chapter will present more swarm robotic algorithms
to reveal the vast expanse of this field.
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TABLE 13.1

Takeaways from This Chapter at a Glance

SI. No. Takeaway Explanation

1 Summary Swarm robotics, the coordination of many simple robots to work

together, is guided by algorithms derived from the observed behaviors
of natural swarms, including communication, local interactions, and
emergent intelligence. Three important algorithms in swarm robotics
were described.

2 GA In the genetic algorithm, a group of robots optimizes their collective
behavior to solve a problem by drawing inspiration from natural
selection principles in genetics. The best solutions are evolved through
processes such as selection, crossover, and mutation.

3 PSO In the particle swarm optimization algorithm, each individual robot is

algorithm treated as a particle with attributes like position and velocity, and the
collective movement of all the robots is determined by information
about their own best previous position and the best position found by
the entire swarm, allowing them to search for the optimal solution
collaboratively (similar to how a flock of birds or a school of fish
behaves in nature) for tasks such as path planning, target tracking, and
the coordinated movement of multiple robots.

4 ACO The ant colony optimization algorithm treats the robots as analogous to
algorithm artificial ants. Their navigation is based on the pheromone levels on
different paths, which are updated based on the quality of previous
solutions.
5 GA vs. PSO GA is better for solving complex problems with diverse constraints,
vs. ACO utilizing its crossover and mutation operators, while PSO is favored due

to its faster convergence. PSO is typically better suited for continuous
optimization problems where solutions can exist across a range of
values. At the same time, ACO excels at discrete optimization problems,
where solutions are selected from a predefined set of options.

6 Keywords Swarm robotics, bio-inspired algorithms, genetic algorithm, particle
and ideas to swarm optimization algorithm, particle representation of robots, fitness
remember function, velocity updates, ant colony optimization algorithm; GA,

PSO, and ACO algorithms
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14 Robotic Swarms

Exploring Additional
Avenues and Vistas

14.1 INTRODUCTION

In this chapter, we continue our study of swarm robotic algorithms. As we persevere
in our learning efforts, we consider two well-known optimization techniques, the
artificial bee colony (ABC) algorithm (Cui et al. 2022, 2024) and the firefly algo-
rithm (FA) (Bisen and Kaundal 2020; Wei et al. 2023), used to solve complex prob-
lems concerned with robot path planning, motion control, and obstacle avoidance.
These methods make use of swarm intelligence concepts to deal with the problems
faced in robotics. They can effectively find solutions across a large solution space.

14.2 ABC ALGORITHM

The ABC algorithm is a much sought-after swarm-based meta-heuristic optimization
algorithm in robotics (Li et al. 2018; Xu et al. 2020). As its name suggests, this algo-
rithm functions by simulating the activities of honeybees. It is used in searching for
an optimal numerical solution among a large number of alternatives, such as in plan-
ning robot paths and solving convoluted robot movement optimization problems. It
allows the robots to efficiently explore a space to find the solution that addresses the
given problem expertly in the most effective manner. An eloquent example is finding
the most optimal route to navigate a labyrinth (Bansal et al. 2013).

We know that the natural activity of honeybees during searching for a food source
is based on the distribution of sub-activities among the bees. The sub-activities are
related to communication, task allocation, nest site selection, reproduction, mating,
floral foraging, pheromone deposition, and patterns of bee navigation. All these traits
of the bees are mimicked in the ABC algorithm. Hence, the ABC algorithm is a
bio-inspired swarm intelligence optimization technique prompted by the collective
foraging behavior of honeybees.

14.2.1 CrAssIFICATION OF BEes INTO THREE GROUPS

Three types of bees participate in the ABC algorithm, each with a disparate assigned
role (Zhou et al. 2025).

i. Scout Bees: The scout bees haphazardly look for new food sources when
one area becomes exhausted of food. These food sources are the potential
solutions being pursued by bees.
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Employed Bees: These bees are entrusted with the exploratory labor in
areas near known food sources, which represent the current robot positions.
They bring nectar into the hive. They test and evaluate the quality of nectar
food sources obtained from the scout bees. They also inform the onlooker
bees about the quality of the nectar source.

Incipiently, the employed bees search for new food sources in response

to unplanned, sporadic stimuli. A food source is identified as a candidate
solution. The suitability or fitness of the same is computed. Subsequently,
suppose a new food source is discovered by these bees as a potential can-
didate solution. Furthermore, suppose that this food source shows a greater
suitability than the previous one. In that case, the new source is adopted.
Otherwise, the new one is rejected.
Onlooker Bees: These bees are occupied in the evaluation of the quality of
food sources. They examine the solutions found by employed bees. They
select the best food sources to conduct further exploration. To this end, the
onlooker bees obtain the data from the employed bees. The employed bees
share the fitness information with the onlooker bees. The onlooker bees
select their food sources based on the probability values derived by calculat-
ing the ratio of the fitness function of a source to the sum of the fitness func-
tions of all sources. In the circumstance of a failure of the bees to improve
the fitness functions of the food sources, their solutions are spurned.

Figure 14.1a shows the two-way interaction between different categories of bees
follows:

Scout and Employed Bees: The scout bees randomly search for food sources,

and the employed bees assess the quality of food sources obtained from
scout bees.

Employed and Onlooker Bees: Employed bees share the fitness information

with onlooker bees, and the onlooker bees evaluate the quality of food
sources found by employed bees.

Onlooker and Scout Bees: Onlooker bees abandon non-improved food sources,

and scout bees find new food sources.

14.2.2 PHAses oF THE ABC ALGORITHM

as

It consists of the rudimentary stages mentioned in Figure 14.1b: start, initialization

phase, set = 1, employed bee and onlooker bee phases; two decision steps: Is a scout

bee present in the colony? If YES, go to the scout bee phase leading to the termina-
tion condition, which is a decision step. If NO, move to checking compliance with the
termination condition. If YES, seek the best solution and stop. If NO, set =7+ 1 and
move to the employed bee phase. More details are given below (Nozohour-leilabady
and Fazelabdolabadi 2016):



FIGURE 14.1

The artificial bee colony algorithm: (a) different types of bees and (b) the flowchart of the algorithm.

SBISIA PUB SONUDAY [euonippy Suliodx] :swiemg d130qoy

99¢C



266 Al Robotics

14.2.2.1 Initialization Phase

i. Definition of the Problem Space: The parameters of the problem are laid
down. Principal parameters to be defined are the starting and ending points
of the robot, indicating the beginning and conclusion of the robot’s journey;
the permissible directions of movements of the robot; and the relevant con-
straints or obstacles likely to be faced by the robot during the course of its
movements.

ii. Creation of Initial Robot Population: A set of potential paths for the
robot movements is randomly generated within the search space of the
problem. The paths represent sequences of steps taken by the robot to
reach food sources. Each food source is described by parameters such as
coordinates and movement directions. Thus, an initial set of solutions is
created in a random fashion. This randomly distributed set of solutions
is given by the equation (Karaboga 2010; Yurtkuran and Emel 2016;
Chaudhary 2023)

xi,j = -xminimumJ + Random number(osl)(-xmaximum,j - xminimum,j) (14])

where i=1,2, 3, ..., SN (SN is the size of solutions, i.e., food sources), j=1,
2,3, ..., D (D is the dimension of optimization parameters), x; is the solution
numbered as ith solution with dimension j, Xiimum, 18 the lower bound for
the dimension j and X,,imum ; 1S the upper bound for the dimension j.

iii. Assignment of Bee Roles: The bee population is divided into three

categories:

a. Employed Bees: These are the bees that are associated with food
sources.

b. Onlooker Bees: These consist of bees that are observing the employed
bees.

c. Scout Bees: These comprise the bees that are exploring unsystematically.

14.2.2.2 Employed Bee Solution Search Phase

After the initialization of the algorithm, the population of food sources or solutions
undergoes a series of repeated cycles. The stages in this phase are:

i. Appraisal of Nectar Amount or Fitness Value: Each employed bee performs
a local search around its assigned food source. During this search, the nec-
tar amount or fitness value of the assigned food source is calculated. The
chief considerations for this calculation are the distance to the target and
collision avoidance. The metrics used in this calculation are the shortest
distance and the least collision risk. The quantity of nectar in a food source
is a reliable indicator of the quality of the corresponding solution.

ii. Updating to Change Position: Each employed bee slightly modifies its
parameters, such as the current food source position or robot path, based
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on its nectar amount or fitness value. This is a means of attempting to
improve the solution or the path potentially. The new solution is expressed
as (Karaboga and Basturk 2007a,b)

vij =X+ (X — %) (14.2)

where k=1,2,3,...,SN,andj=1, 2, 3, ..., D. k and j are randomly generated, and k
must be different from i; and ¢, ; is a random number in the interval [-1,1].

Briefly stated, each employed bee compares the nectar amount or fitness value of
the new source for any randomly selected solution from the swarm with reference to
its original value. If the nectar amount of the latest source is higher than that of the
previous one in its memory, the employed bee memorizes the new position. It forgets
and ignores the old one. If the new source has a lower nectar amount, the employed
bee preserves the position of the previous source in its memory.

14.2.2.3 Onlooker Bee Solution Search Phase
The stages in this phase are as follows:

i. Probability Calculation: The onlooker bees search for solutions probabi-
listically. A technique known as roulette wheel selection is used. Roulette
wheel selection, also referred to as fitness proportionate selection, does an
impersonation of a casino roulette wheel. Here, individuals are assigned
slices proportional to their fitness. The fitter is an individual, the higher its
probability of being selected for reproduction.

The onlooker bees conduct their search based on better solutions. A prob-
ability is calculated for each employed bee to be selected by an onlooker
bee. This is obtained from the nectar amount or fitness value of each food
source. Therefore, each solution in the swarm is associated with a selection
probability calculated by an onlooker bee. This onlooker bee evaluates the
nectar information taken from all employed bees and calculates a probabil-
ity related to its nectar amount as (Huang and Chuang 2020)

fit,

SN
_fit;
J=1

pi= (14.3)

where fit; denotes the fitness value of solution X;. The fitness value fit; is
defined as follows:

fit, = if £(X,)20 (14.4)

1
1+ f(X))

fit, =1+ f(X,) if f(X;)<0 (14.5)

where f(X)) represents the objective function value of the decision vector X;.
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ii. Selection and Updating of Positions of Food Sources: As in the case of the
employed bee, the onlooker bee checks the nectar amount of the candidate
source and produces a modification of the source position in its memory.
Based on the fitness values, onlooker bees choose food sources with higher
quality, suggestive of better robot paths, and therefore with higher probabil-
ity. The onlooker bees perform similar position updates as employed bees,
further refining the good solutions. Similar to employed bees, the onlooker
bees perform local search around the selected food sources.

14.2.2.4 Scout Bee Solution Search Phase
The stages under this phase are as follows:

i. Stagnation Assessment Check: An important control parameter in the ABC
algorithm is the limit or abandonment criteria. It is stipulated as a predeter-
mined number of cycles or trials. When a solution cannot be improved after
reaching this limit, i.e., if the food source or robot path of an employed bee
does not improve after the permissible number of iterations defined in the
limit, then that food source or path is treated as stagnant. It is relinquished
and substituted by a new one in the scout phase. This means that the cor-
responding employed bee that is assigned to that solution assumes the role
of a scout bee.

ii. Random Search by Scout Bee: This freshly produced scout bee is sent to
randomly explore the search space to find a potentially new promising path,
and a new food source is generated. All other solutions in the swarm follow
the same process.

14.2.2.5 Repetition and Updating Food Sources

The steps in Sections 14.2.2.2-14.2.2.4 are repeated. After each phase, the food
sources are updated based on the best solutions found by the bees. A gradual improve-
ment of the overall path quality is thereby achieved. Iterations are continued through
the employed, onlooker, and scout bee phases until a termination condition is met,
such as reaching a maximum number of iterations or finding a satisfactory solution,
as mentioned above.

14.2.3 OsjecTivE FUNCTION FOR GUIDING THE BEES IN THE ABC ALGORITHM

The objective function holds crucial significance in the ABC algorithm because it
serves as the yardstick that determines the quality of potential solutions to the prob-
lem, which is represented by the positions of food sources. The objective function is
used to calculate the fitness or quality of that solution. It allows the bees to compare
different options offered.

How is the objective function calculation utilized in the algorithm? The ABC
algorithm uses the objective function values to guide the movement of bees. The
bees tend to explore areas with better objective function values, which leads them
toward the optimal solution. The information from the objective function is used
by the onlooker bees to decide which food sources or solutions to focus on. Food
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sources with higher quality or better objective function values are prioritized. The
algorithm frequently reaches a conclusion and halts when the improvement in the
objective function value becomes negligible, signifying that a near-optimal solution
has been found.

14.2.3.1 Objective Function as a Measure of the Robot Swarm Performance

In an ABC algorithm applied to a robot swarm, the objective function represents a
measure of the proficiency with which the swarm is performing its designated task.
The measurement of the proficiency is inclusive of operations such as minimizing the
total distance traveled to reach a target, maximizing coverage area in an exploration
scenario, or optimizing the collective decision-making process, depending on the
specific application. It quantifies the quality of the current configuration or behavior
of the swarm. Therefore, it provides supervisory recommendations to the algorithm
for adjusting robot positions and actions to improve the overall performance.

14.2.3.2 Considerations about Choosing the Objective
Function in a Robot Swarm

Vital considerations to be kept in mind during the selection of the objective function
in a robot swarm ABC algorithm are:

i. Foundation of the Objective Function Formula: The specific formula for the
objective function is directly related to the desired outcome of the swarm.
Possible outcomes are minimizing the average distance to a target, maxi-
mizing the number of points covered in a search operation, or balancing
resource allocation among robots.

ii. Modeling and Simulation of Collective Swarm Behavior: As each robot
within the swarm contributes to the overall objective function depending on
its current position, actions, and sensory data, the algorithm evaluates the
collective behavior of the swarm, and its values portray the same.

iii. Assessment of Fitness Score: The objective function bears an analogy to the
concept of nectar in a bee colony. Its value acts as a fitness score for each
potential solution or robot configuration. A higher value of the objective
function for a solution reflects better performance for that solution.

14.2.3.3 Dependence of Objective Functions on Robot Swarm Goals

For a robot swarm using ABC, the objective function is chosen in accordance with
the goal to be reached:

i. For Area Coverage Responsibility: Aiming to distribute robots evenly
across the area, the sum of the distances between each robot and its nearest
neighbors is taken as the objective function.

ii. For Target Search Job: Focusing on the target, the minimum distance
between any robot in the swarm and the target location is preferred as the
objective function.

iii. For Task Allocation Duty: Good counseling to the swarm is provided by a com-
bination of factors like completion time, efficiency, and workload distribution
among robots. So, the objective function is defined with these issues in mind.
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14.2.3.4 Objective Function for ABC Algorithm Applied
to Organizing Robot Navigation
In the ABC algorithm applied to robot navigation, the objective function typically
represents the shortest path distance between the starting point of the robot and its
goal. At the same time, it considers obstacles and other constraints in the environ-
ment. So, it smartly aims to minimize this distance to find the optimal path.
Prime features of the objective function in the ABC algorithm for robots are

i. Emphasis on Minimization of Objective Function Value: The objective
function is usually designed to be minimized. This statement means that
the algorithm seeks the path that yields the lowest total distance traveled.

ii. Incorporation of Path Parameters: The objective function incorporates
parameters such as the coordinates of locations or landmarks along the
robot’s path. Then the ABC algorithm works for the adjustment of these
parameters to optimize the route.

iii. Penalty Term Inclusion for Obstacle Avoidance: When navigating through
obstacles, the objective function includes penalty terms for reaching in close
vicinity of obstacles, encouraging the robot to find a safe path, e.g.,

Objective function for ~ Distance between consecutive  Penalty value if the robot
= +

obstacle avoidance points on the path of the robot  reaches very close to
an obstacle

(14.6)

iv. Multi-Objective Optimization in Complex Scenarios: The objective func-
tion takes multiple factors into account. These factors are the travel time,
energy consumption, or smoothness of the path. As a result, the end task
becomes the optimization of a multi-objective problem.

14.2.4 ArpLicaTIONS OF THE ABC ALGORITHM IN RoBoTICS

The ABC algorithm finds applications not only in robot path planning and multi-robot
coordination but also in robot arm manipulation. Significant areas where it makes an
impact are:

i. Robot Path Planning and Navigation: The ABC algorithm is widely used
in robotics for robot path planning. It helps in finding the best, optimal,
or near-optimal collision-free routes for robots. Mirroring the eating hab-
its of honeybees, it navigates through cluttered environments by optimiz-
ing the sequence of waypoints and movement parameters. It takes factors
like distance, time taken, obstacles, terrain, and other constraints into
consideration.
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ii. Multi-robot Coordination: The ABC algorithm aids in coordinating the
movement of multiple robots to achieve a collective goal. These could be
assigning tasks and optimizing their paths to avoid collisions and maxi-
mize efficiency. The algorithm is particularly useful in scenarios with
obstacles.

iii. Robot Arm Manipulation: The ABC algorithm is used for optimizing the
trajectory of a robotic arm to precisely reach a target position while circum-
venting the limits imposed by the joints of the robot and the obstacles on its
way. This activity of the robot is based on:

a. Optimization of Joint trajectory: The movement of robot joints is
adjusted to achieve smooth and efficient motion.

b. Grasp Planning: The best hand configuration to grasp an object is
determined.

c. Object Maneuvering: The movements of the robot are controlled to
manipulate objects precisely.

iv. Adaptive Robot Control: The ABC algorithm is applied to dynamically
adjust the parameters of a robotic control based on changing environmental
conditions, thereby enhancing its performance in real-time situations.

14.2.5 ADVANTAGES OF THE ABC ALGORITHM IN RoBOTICS

The ABC algorithm offers several benefits in robotics. These include its simplicity,
ease of use, robust exploration skills, the ability to strike a proper equilibrium between
exploration and exploitation, the capacity to manage intricate, high-dimensional
search spaces, and the capability for fast convergence. These recompenses make it
suitable for solving various optimization problems. These include robot path plan-
ning and motion control, particularly when talking about non-linear or multimodal
scenarios. The advantages are enumerated below:

i. Simple in Understanding and Easy in Implementation: The ABC algorithm
is based on the foraging behavior of bees. It translates to a relatively straight-
forward concept, making it easier to implement compared to other complex
optimization methods. The straightforward structure of the ABC algorithm
with a few parameters makes it easy to integrate into robotic systems.

ii. Effectiveness of Exploration and Exploitation: The ABC algorithm bal-
ances exploration (searching new areas of the solution space) and exploita-
tion (focusing on promising areas and refining favorable solutions) through
its distinct bee types: employed bees, onlooker bees, and scout bees. This
balancing allows it to find good solutions in complex environments.

iii. Capability of Handling Complex Problems: Due to its swarm intelligence
nature, the ABC algorithm can efficiently tackle multifaceted optimization
problems with many variables and constraints. It can effectively handle
multiple constraints in robotic issues, such as joint limits, obstacle avoid-
ance, and energy consumption. These kinds of problems are common in
robotic applications.
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iv. Fast Convergence to a Solution: The ABC algorithm usually converges
quickly to a near-optimal solution. The quick convergence is crucial for
real-time robotic decision-making. However, quick convergence sometimes
evades thorny problems.

v. Adaptability: The algorithm is easily modified and hybridized with other
optimization techniques to suit specific needs in robotics.

vi. Parallelization Potential: The independent behavior of bees allows for par-
allel processing. The parallelism approach can significantly improve com-
putation speed in multifarious robotic scenarios.

14.2.6 LimitaTioNs OF THE ABC ALGORITHM IN RoBoTICS

When applied to robotics, the ABC algorithm suffers from several limitations, includ-
ing: slow speed of convergence with increasing problem complexity, vulnerability to
local optima, poor exploitation ability, and anticipated difficulty in handling com-
plex, high-dimensional robotic problems. These shortcomings lead to suboptimal
solutions and inefficient path planning in real-time scenarios.

i. Weakness in Exploitation: ABC excels in exploration. This means it is able
to search a wide range of solutions but struggles to refine solutions near the
optimal point. Every so often, it gets stuck in local minima due to its basic
search mechanism.

ii. Slow Convergence in Solving Complex Problems: The algorithm requires
a substantial number of iterations to reach a near-optimal solution for intri-
cate problems. The large number of iterations is problematic in time-critical
robotic applications.

iii. Parameter Tuning Sensitivity: The performance of the ABC algorithm is
sensitive to the selection of appropriate parameters, such as the population
size and the number of iterations (i.e., the iteration count). It requires careful
parameter tuning for solving specific robotic problems. A casual approach
to tuning can severely impact algorithm performance.

iv. Limited Dimensionality Handling Capability: The standard ABC algorithm
struggles with high-dimensional search spaces commonly encountered in
complex robotic tasks. In these cases, many variables must be optimized
simultaneously.

v. Likelihood of Premature Convergence: In certain situations, especially
when dealing with inexplicable, non-convex optimization landscapes, the
ABC algorithm converges too quickly to a local minimum, suboptimal
solution. The potential for unduly hasty, untimely convergence necessitates
modifications to enhance exploration.

14.2.7 ADDRESSING THE ABC ALGORITHM LIMITATIONS

After knowing the limitations of the ABC algorithm, one can devise suitable strat-
egies to overcome its shortcomings. To cope with these limitations, the principal
strategies that evolved are:
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1. Hybrid Approaches: The ABC algorithm is combined with other optimi-
zation algorithms like the particle swarm optimization (PSO) algorithm.
This unification of algorithms is beneficial because it enables leveraging
the strengths of both methods to improve exploration and exploitation
capabilities.

ii. Adaptive Parameter Tuning: The algorithm’s parameters are dynamically
adjusted, taking the search progress into account. The dynamic adjustment
procedure helps in addressing the sensitivity of the algorithm to the setting
of parameters.

iii. Improved Search Operators: The core search equation of the ABC algo-
rithm is modified with a view to enhancing the exploitation phase and navi-
gating weird search spaces in a better way.

iv. Multi-objective Optimization: It involves the utilization of multi-objective
variants of ABC algorithm. This allows handling of multiple competing
objectives in robotic tasks. Robot path planning is conducted while consid-
ering factors such as distance, safety, and energy consumption.

14.3 FIREFLY ALGORITHM

Like the algorithms treated in foregoing sections, the FA is a nature-inspired opti-
mization technique (Fister et al. 2013; Patle et al. 2017, 2018, 2023). It facsimiles the
social behavior of fireflies for the coordination and guidance of a group of robots
toward a desired goal. It helps robots find the best path through a messy and chaotic
environment by sidestepping obstacles.

In this algorithm, each robot is considered a firefly. Each firefly represents a poten-
tial solution to the problem. The intensity of light emitted by it indicates the quality
of that solution. The movements of fireflies are determined by their attraction to each
other. The attraction depends on the luminous intensity, or brightness, of the fireflies.
The less bright fireflies move toward the better-performing brighter ones. So, each
firefly migrates toward the brighter fireflies in the swarm (Figure 14.2a). Figure 14.2a
shows a Firefly 1 in its initial state. It has the lowest brightness value. The brightness
of fireflies increases in the order 1, 2, 3, 4, with Firefly 1 at the minimum and Firefly
4 at the maximum level. So, the fireflies move in the sequence 1, 2, 3, 4. Firefly 5,
which is less bright than Firefly 4, is also attracted toward Firefly 4, after which the
goal state is reached.

Each firefly or robot starts with a random position. At the starting point, it evalu-
ates the quality of its initial path. The algorithm effectively allows the robots to
explore and find optimal solutions to complex problems collaboratively. Robot path
planning, target tracking, and environmental mapping are the types of issues that are
resolved.

14.3.1 EssenTiAL POINTS ABOUT THE FA

Some vital features and ideas related to the FA warrant the reader’s attention:



FIGURE 14.2 The firefly algorithm: (a) firefly movements and (b) the algorithm flowchart.
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i. Origination of Algorithm from Bio-Inspiration: The algorithm does an
impersonation of the flashing behavior of fireflies to solve optimization
problems. A brighter firefly attracts a less brilliant one. The brighter firefly
represents a robot that is moving toward a better solution, dependent on a
fitness function correlated to the task at hand.

ii. Dynamics of Robot Motion: Each robot calculates its fitness value, viz., the
brightness. Based on the fitness value, it moves toward the brighter robots
in its proximity. As a consequence, a simulation of the attraction between
fireflies is performed.

iii. Exploration and Exploitation: The algorithm balances two activities. These
activities are exploration and exploitation. Exploration is concerned with
searching a wide area. Exploitation focuses on promising regions. The bal-
ancing of activities is done by adjusting parameters such as attractiveness
and randomness. This process of balancing enables the swarm to stumble
upon diverse solutions and then converge on the best solution among the
discovered ones.

14.3.2 IMPORTANT PARAMETERS OF THE FA

Fundamental parameters specific to the FA must be defined. These are as follows:

i. Brightness Function: It is a mathematical function determining the bright-
ness of a robot. The brightness depends on the current state of the robot
or its performance on the given task. The brightness of a robot firefly is
directly proportional to the intensity of light radiated by it.

Light Intensity: It represents the fitness value of a firefly and governs its
attractiveness to other fireflies. The light intensity /(x) of a firefly is related
to the objective function by the equation (Mashhour et al. 2020)

I(x) o f(x) (14.7)

where f(x) is the value of the objective function.

ii. Attractiveness Parameter: It controls the strength with which a firefly is
attracted to other brighter fireflies, i.e., how strongly a robot is attracted
to a brighter neighboring robot. It is usually measured by a parameter that
depends on the distance between the robots.

iii. Randomness Parameter: It introduces random movement of robots to pre-
vent premature convergence of the algorithm. Hence, the search space is
explored more effectively.

14.3.3 MAIN Steps oF THE FA

The principal steps of the FA in swarm robotics are shown in Figure 14.2b: start, ini-
tializing a population of fireflies by placing the fireflies at random positions, setting
t=1, determining the brightness of each firefly from a fitness function, updating the
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brightness of fireflies according to their fitness, checking if the prefixed maximum
number of iterations is reached, if NO setting 1 =1+ 1, iteratively moving each firefly
toward brighter fireflies in the population, and repeating the process until a suitable
solution is found. If YES, record the best solution and stop. The algorithmic process
is essentially a representation of the social behavior of fireflies. In their society, the
fireflies are attracted to brighter individuals. The attraction of fireflies allows the
swarm to converge toward an optimal solution. Further specifics about the algorithm

Al Robotics

stages are declared as follows (Banerjee et al. 2022):

i.

ii.

iii.

iv.

14.3.

Besides robot path planning, the FA helps in target localization and tracking, coop-
erative exploration and decision-making in a group of robots, and in many other

ways.

i.

ii.

Initialization: A random population of fireflies is generated. This popula-
tion represents potential solutions in the search space. A brightness value is
assigned to each firefly based on its fitness function. The higher the fitness,
the brighter the firefly.
Firefly Movement and Attraction: For each firefly:
a. The distance to every other firefly in the population is calculated.
b. Ifanother firefly is brighter, the firefly under consideration moves toward
it based on the distance and brightness difference between fireflies.
c. From the calculated movement of the current firefly, the position of the
current firefly is updated.
Brightness Update: After each movement, the brightness of each firefly is
re-evaluated by feeding its updated position and the fitness function.
Iteration and Termination: The firefly movement and brightness update
steps are repeated for a predefined number of iterations. The best solution is
usually the one having the brightest firefly at the end of the iterations.
Convergence: In order to avoid getting stuck in local optima, the algorithm
should balance between the activities of exploration (searching a large area)
and exploitation (focusing on promising regions).

4  AprrLicATIONS OF FA

Robot Path Planning: The algorithm uses fireflies to find optimal routes for
locomotion of mobile robots in complex environments, taking cognizance
of the obstacles and terrain variations, and maximizing energy efficiency.
The robotic navigation is rendered possible by collectively finding the most
efficient route. As the brighter fireflies represent better paths, each robot is
attracted to the brightness-steered best path discovered by other robots in
the swarm.

Target Localization and Tracking by Robots: A swarm of robots collabora-
tively track a moving target. They do so by adjusting their positions based
on the brightness signal received from the target, i.e., by moving toward
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brighter signals emitted from the target. In this way, they are collectively
able to locate a target.

iii. Cooperative Exploration and Decision-Making in a Robotic Swarm: A
robotic swarm collectively makes decisions by simulating firefly behavior.
The best solution emerges based on the brightness of different alternative
options. Along these lines, the robots can explore a large area by moving
toward regions with the highest brightness, which represent the most inter-
esting features.

iv. Facilitating Swarm Robotic Jobs: The movements and task allocations of
multiple robots in a swarm are coordinated to achieve collective goals like
coverage or exploration

v. Sensor Deployment and Fusion: Robots collectively build a more accurate
picture of the environment by sharing information about their brightness
values indicated by sensor readings. This pictorial representation of the
environment is used to optimize the placement of sensors in a given area,
maximizing coverage and efficiency.

vi. Robot Arm Manipulation: Robot arm trajectories are optimized for carry-
ing out precise manipulation tasks satisfactorily.

14.3.5 ADVANTAGES OF THE FA

The FA offers several advantages in robotics. Among these, the benefits that are
most worthy of attention include its ability to handle complex, multi-dimensional
optimization problems and find near-optimal solutions in dynamic environments.
Additionally, it enables efficient path planning, effective multi-robot coordination,
and generally provides a good balance between exploration and exploitation. These
capabilities make the algorithm suitable for multifaceted robotic applications like
swarm robotics and sensor deployment strategies.
The advantages of the FA in robotics are:

i. Global Optimization Capability: FA can effectively search for near-global
optima in complex problem spaces. This benefit offered by FA is crucial for
finding optimal robot paths or coordinating a swarm of robots in challeng-
ing environments.

ii. Adaptability to Dynamic Environments: The algorithm adapts to chang-
ing conditions by adjusting the movement of fireflies representing robots
in response to real-time information. Flexible path planning in dynamic
environments can therefore be made.

iii. Multi-robot Coordination: The FA can facilitate coordinated movement
and task allocation among multiple robots in a swarm by simulating the
attraction behavior of fireflies. This facilitation makes efficient collabora-
tive behaviors possible.

iv. Easy Implementation: The FA is relatively simple to implement and under-
stand. Hence, it can be rapidly prototyped to carry out experiments in
robotic applications.
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v. Non-requirement of a Good Initial Solution: FA does not require precise initial
guesses, unlike some other optimization algorithms. Abdication of guesswork
makes it suitable for scenarios where the initial state of a robot is uncertain.

vi. Ability to Handle Complex Constraints: The algorithm is adaptable to
incorporate various constraints related to robot movement. Examples of
constraints are obstacle avoidance or energy consumption, while searching
for optimal solutions.

14.3.6 DISADVANTAGES OF THE FA

In robotics, the main disadvantages of the FA include its tendency to get fastened to
local optima and provide a slow convergence speed. Besides these shortfalls, sensi-
tivity to parameter tuning and potential for premature convergence hinder its ability
to find optimal solutions in complex robotic navigation scenarios. The issues are
especially aggravated when dealing with multimodal problems having multiple solu-
tions, including one or more global solutions.

The FA disadvantages in robotics are as follows:

i. Local Optima Trap: The algorithm follows the principle of movement toward
brighter fireflies. As it progresses, it easily gets stuck in a local optimum. This
happens whenever a firefly encounters a seemingly better solution at an early
stage. In such a situation, the exploration of the wider search space is thwarted.

ii. Slow Convergence of the Algorithm: In certain scenarios, FA makes a large
number of iterations to reach a satisfactory solution. This slow convergence
process makes it less efficient for real-time robotic applications.

iii. Premature Convergence of the Algorithm: In some cases, the algorithm
converges too quickly to a suboptimal solution. This is likely especially
when dealing with high dimensionality or complex environments.

iv. Parameter Sensitivity: The performance of FA heavily depends on the cor-
rect selection of parameters like attractiveness and randomness coefficients.
Such over-reliance has unfavorable repercussions. Optimization of these
parameters is often an uphill task in complicated robotic problems.

v. Limited Exploration Ability: The movement of fireflies is primarily directed
toward brighter ones. This approach restricts the exploration of diverse
areas in the search space, often resulting in the missing of better solutions.

14.3.7 PossiBLE SOLUTIONS TO MITIGATE DISADVANTAGES OF FA

Knowledge of the drawbacks of the FA aids in developing methods to alleviate
the deficiencies. Among these methods, the following are regarded as exigent and
demanding:

i. Hybrid approaches: Exploration ability is improved along with the possibil-
ity to escape from local minima when FA is combined with other optimiza-
tion algorithms, e.g., genetic algorithms or simulated annealing.
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ii. Adaptive Parameter Tuning: Mechanisms can be implemented to adjust
parameters based on the optimization progress dynamically. These adjust-
ments can enhance the performance of the algorithm.

Improved Attractiveness Function: The attractiveness function is modified
to better represent the problem and encourage more varied exploration.
Algorithm Based on Leader Strategy: The problem of unbalanced explora-
tion and exploitation, and the insufficient diversity of the algorithm result in
a firefly search algorithm based on the leader and follower population model
being proposed (Zhang and Wang 2023).

iii.

iv.

14.4 DISCUSSION AND CONCLUSIONS

Table 14.1 gives a presentation of the discussions in this chapter in a terse tabular
format. An important consideration when using the ABC and FAs in robotics is the
correct formulation of the problem because successful optimization depends on the
accurate definition of the objective function. No less significant is the incorporation
of constraints of robot kinematics and dynamics into the optimization process. As
robotic systems require real-time decision-making, a high computational efficiency
of the algorithm used is yearned for.

Takeaways from This Chapter at a Glance

TABLE 14.1

SI. No. Takeaway

1 Summary

2 ABC algorithm

3 FA

4 ABC algorithm
vs FA

5 Keywords and

ideas to
remember

Explanation

Two popular swarm intelligence optimization techniques used for robot
path planning, motion control, obstacle avoidance, and multi-robot
control were described, namely, the artificial bee colony (ABC) and the
firefly algorithm (FA).

The ABC algorithm mimics the foraging behavior of honeybees, where
bees work in different roles, such as employed, onlooker, and scout
bees, collaborating to find the best food source. The algorithm
iteratively updates potential solutions (representing robot movements)
based on the quality of the food source (fitness function), allowing for
both exploration (searching new areas) and exploitation (refining good
solutions).

The FA is based on the flashing behavior of fireflies, where brighter
fireflies attract the less bright ones. Each firefly represents a potential
solution, and the fireflies move toward brighter (better) solutions based
on their relative brightness, gradually converging toward the optimal
solution.

The ABC algorithm is better suited for solving problems that involve
exploring a large search space, thanks to its diverse bee roles. FA is
more suitable for solving complex, high-dimensional problems and
fine-tuning solutions due to its attraction mechanism.

Artificial bee colony algorithm; employed bee, onlooker bee, and scout
bee solution search phases; objective function, firefly algorithm,
comparison of ABC algorithm, and FA
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Swarm robotics utilizes a variety of algorithms, allowing the robots to coordinate
and solve entwined tasks by exploring and exploiting search spaces. As a multitude of
swarm robotic algorithms have come into the limelight and continue to do so (Nayak
et al. 2020), the discussion of algorithms will be continued in the ensuing chapter.
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’I 5 Robotic Swarms

Expanding Horizons

15.1 INTRODUCTION

This chapter further extends our coverage of swarm robotics, continuing the dis-
cussion from the previous chapter. Herein, we undertake the study of bacterial for-
aging optimization (BFO) algorithm (Yang et al. 2014; Majumder et al. 2019) and
salp swarm algorithm (SSA) (Romeh and Mirjalili 2023; Yang et al. 2024). These
algorithms are used to determine the optimal paths for robots to navigate through
complex environments, taking into account obstacles on the route and variations in
terrain. They escort robots to avoid collisions with obstacles during navigation. The
algorithms are also utilized in multi-robot collaboration, facilitating the coordinated
movement and decision-making of a team of robots to work cooperatively and com-
plete challenging tasks. Hence, they are indispensable components in the toolkit of
robotic algorithms.

Advancing still further in this chapter, a comparative analysis of the various swarm
robotic algorithms discussed in Chapters 13—15 will be performed. It is predicated
on the optimality of the path, the complexity of computation, adaptability to various
environments, real-time performance, and suitability for specific robotic activities.
The advantages and disadvantages of the algorithms are emphasized to determine
the best choice for a particular situation. Comparing the pros and cons of each option
provides a structured and logical approach to making a decision.

15.2 BFO ALGORITHM

The BFO is a swarm intelligence optimization algorithm. It borrows its root working
idea from the collective food searching behavior of bacteria like Escherichia coli (E.
coli) (Guo et al. 2021; Wang et al. 2022). It treats each robot as a bacterium. Bacterial
actions, such as chemotaxis, reproduction, and elimination-dispersal, serve as mecha-
nisms that can be applied to solve robotic problems. In these mechanisms, the bacterium
moves toward nutrient-rich areas by swimming and tumbling, eventually falling head
over heels (Figure 15.1a and b). Figure 15.1a shows an E. coli bacterium moving straight
in the running mode, while Figure 15.1b shows the bacterium in the clockwise tumbled
position. The algorithm essentially simulates the process of searching for the best solu-
tion in a complex problem space. Indeed, it is used to find optimal solutions to Byzantine
optimization problems across various fields of engineering, data science, and robotics.

15.2.1  EsSeNTIAL FEATURES OF THE BFO ALGORITHM

The four prominent characteristics of the BFO algorithm are (Fiveable 2024):
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i. Chemotaxis: It concerns the directed movements of cells, organisms, or
their parts in response to a chemical stimulus. It is the primary behavior of
bacteria as they move toward a nutrient source. In this behavioral style, the
bacteria adjust their swimming direction based on the concentration gradi-
ent of the nutrient. Chemotaxis essentially represents the algorithm’s hunt
for better solutions.

ii. Swarming: This occurs when bacteria gather around a high concentration of
nutrients, representing a local search phase. Here, the algorithm focuses on
refining promising solutions within a specific area.

iii. Reproduction: High-fitness bacteria or good solutions are allowed to repli-
cate. The propagation of better solutions is thereby proliferated.

iv. Elimination-Dispersal: Low-fitness bacteria or poor solutions are elimi-
nated from the population. Their stamping out prevents stagnation and
encourages exploration and investigation of new areas in the search space.

15.2.2  MAIN Sters oF THE BFO ALGORITHM

Figure 15.1c depicts the course of actions followed in the execution of the BFO algo-
rithm. The stages in the BFO algorithm are: start, initialization phase, evaluation of
the fitness function, beginning and ending of the chemotaxis phase, commencing and
closing of the reproduction phase, start and end of the elimination-dispersal phase,
optimization of values, the best solution phase, and then the algorithm comes to a
halt. The ends of chemotaxis, reproduction, and elimination-dispersal phases mark
decision steps after which further progress is made through self-examination of the
status of calculations and, accordingly, determining what to do next. If YES, the
algorithm moves forward. If NO, it moves back to the step of evaluation of the fitness
function. The output from the step of optimization of values is fed back to the ini-
tialization phase. We explore these stages in depth as follows to uncover more details
(Gan and Xiao 2020):

i. Initialization: A randomly distributed population of bacteria is dispersed
within the search space. This random distribution represents the potential
solutions or fixes to the problem.

ii. Chemotaxis Phase: Each bacterium moves toward a better solution. During
movement, a bacterium freely adjusts its position based on the fitness func-
tion. A mechanism of tumbling or randomly changing direction acts as a
means of escaping precarious episodes. It helps to avoid situations in which
the bacterium becomes immobilized in local optima.

iii. Reproduction Phase: Bacteria with higher fitness values are allowed to
replicate. By replication, new bacteria are created, possessing similar
characteristics.

iv. Elimination-Dispersal Phase: Bacteria with low fitness are eliminated from
the population. In reciprocation, new bacteria are randomly introduced into
the population to maintain diversity and heterogeneity.



FIGURE 15.1 The swarm robotic algorithm enthused by the mechanisms of the natural process of bacterial foraging optimization: (a) running mode
of the bacterium, (b) tumbling mode of the bacterium, and (c) the algorithm.
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15.2.3  ArpLICATIONS OF THE BFO ALGORITHM

The BFO algorithm finds applications in swarm robotics primarily for efficient allo-
cation of tasks that require decision-making in a decentralized manner with a dis-
persed approach, and coordinated movements among a group of robots. It capitalizes
on the natural bacterial properties to optimize collective behavior, such as area cov-

erage, path planning, and resource search, within a swarm environment.

L.

ii.

iii.

iv.

Area Coverage by Robots: The BFO algorithm effectively distributes robots
across a given area by simulating the bacteria’s chemotaxis behavior. Each
robot navigates toward nutrients, representing target points. Vigilance is
maintained to avoid collisions and optimize coverage efficiency.

Robot Path Planning: The BFO algorithm is used to plan optimal paths
for individual robots within a swarm to navigate complex environments by
simulating the movements of bacteria toward food sources. The bacteria
move by avoiding obstacles to reach the targeted destinations efficiently.
Resource Search by Robots: The BFO algorithm guides robots to search
different areas based on chemical gradients representing resource concen-
trations. Faster and more comprehensive search operations are rendered
possible by this algorithm in scenarios where a swarm needs to locate dis-
seminated and scattered resources.

Task Allocation to Robots: Robots dynamically adapt their roles within the
swarm by adjusting the reproduction and elimination steps in the BFO algo-
rithm. These steps are designed for allocating tasks based on their current
position, capabilities, and environmental conditions.

. Robot Swarm Coordination: The decentralized nature of BFO allows each

robot to make local decisions. The decision made by a robot is based on
its immediate entourage or neighborhood. The robot’s decision facilitates
emergent behaviors, such as the aggregation of the swarm, its splitting, and
re-grouping when needed.

15.2.4 ADVANTAGES OF THE BFO ALGORITHM

Calling attention to the benefits of the BFO algorithm, mention may be made of:

L.

ii.

iii.

Easy Comprehension and Implementation: The basic BFO algorithm is
relatively simple to understand in principle and easy to apply in practice.
These favorable features make it suitable for real-time applications on robot
swarms.

Effective for Complex Optimization Issues: The BFO algorithm offers
diverse search mechanisms. Therefore, it is capable of handling problems
with multiple local optima.

Good Balance between Exploration and Exploitation: The tumbling behav-
ior in chemotaxis allows for exploration of the search space. At the same
time, focus on refining promising solutions is maintained.

285
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iv. Global Search Capability: BFO effectively explores a large search space.
This ability of the BFO algorithm ensures that the swarm can find optimal
solutions even in complex and tangled environments.

v. Environmental Adaptability: The BFO algorithm can adapt to dynamic
environments and changing task requirements. This adaptation is achieved
by adjusting parameters like the size of the chemotaxis step.

vi. Parallel Processing: The independent behavior of individual bacteria or
robots allows for efficient parallel processing. Parallel operation is crucial
for robotic large-scale swarm systems.

15.2.5 LiMITATIONS OF THE BFO ALGORITHM

The BFO algorithm has several limitations, primarily its slow convergence speed and
susceptibility to becoming trapped in local optima due to a fixed chemotactic step
size. Difficulty is experienced in balancing exploration with exploitation. Exploration
is trying new things. Exploitation is utilizing what is known. Potentially weak con-
nections between bacteria incite suboptimal solutions. Such limitations hamper its
efficacy in real-time robotic applications. In these cases, making a fast and accurate
decision is a mandatory requirement.

i. Fixed Step Size: The standard BFO algorithm uses a constant chemotaxis
step size. The constant size of the step is the cause of the algorithm’s poor
performance in complex environments. In such situations, different levels of
exploration are required, depending on the circumstances. The action will
vary with the specific context.

ii. Local Optima Trapping: Due to the fixed step size, the BFO algorithm read-
ily gets trapped in local optima. When so trapped, it delivers a suboptimal
solution instead of the global best solution.

iii. Slow Convergence of the Algorithm: In certain scenarios, the BFO algo-
rithm takes a long time to reach a satisfactory solution. The slow con-
vergence makes it less appropriate for real-time robotic applications that
require rapid response.

iv. Need for Algorithm Parameter Tuning: For specific robotic problems, it has
been found that optimizing the parameters of the BFO algorithm, such as
the chemotaxis step size and reproduction rate, becomes difficult, requiring
precise execution, and thus needs to be carefully performed.

v. Limited Applicability of the Algorithm: The BFO algorithm is not the best
choice, especially when dealing with highly dynamic or unpredictable situ-
ations, which depend on the task and environmental complexity.

15.2.6 PoTENTIAL SOLUTIONS TO ADDRESS THE BFO ALGORITHM LIMITATIONS

Several alternative methodologies are suggested to deal with the limitations of the
BFO algorithm:
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i. Making Chemotaxis Self-Adaptive: A self-adaptive chemotaxis step size is
adopted. The size of the step is adjusted based on the search process. This
adjustment improves exploration and exploitation capabilities.

ii. Hybrid Approaches: The BFO algorithm is often combined with other opti-
mization algorithms, such as evolutionary algorithms. This combination
helps in overcoming its limitations. Furthermore, it offers improved perfor-
mance in specific robotic tasks.

iii. Improvement in Population Diversity: Strategies to maintain population
diversity prevent premature convergence of the algorithm and improve the
search process. Introduction of random perturbations and incorporation of
diversity measures are examples of such strategies.

15.3 SALP SWARM ALGORITHM

From the foraging behavior of bacteria, we transition to the swarming behavior of
salps moving in a chain-like structure. The SSA is a computational optimization
technique in swarm robotics. It intimately parallels the collective behavior of marine
creatures called salps to solve optimization problems (Faris et al. 2019; Houssein
et al. 2020; Castelli et al. 2022). A group of robotic agents, copying the chain-like
formation of salps, work together to solve Gordian problems. The problems are
solved by iteratively updating the positions of salps based on the position of the
leader salp. Efficient exploration and exploitation of the search space can therefore
be made within a given environment. It is time and again used for path planning and
organizing coordinated movement in robotic swarms.

15.3.1  SALIENT POINTS ABOUT THE SSA ALGORITHM

Before proceeding further, a few words are in order regarding the biological inspira-
tion, search mechanism, and suitability for application of the SSA algorithm.

(i) Biological Inspiration: Salps are known to form chain-like formations while
swimming (Figure 15.2a and b). Figure 15.2a shows the leader salp, while
Figure 15.2b shows the follower salp; the leader salp is drawn with thick
lines to distinguish it from the follower salp, made in thin lines. The basis
for the algorithm structure is a single leader guiding the group. This leader
salp directs the movement of the other follower salps. The primary objective
is to identify the source of food within the search space. Figure 15.2¢ shows
a salp chain with the leader salp (thick lines) in the front reaching near the
food, and several follower salps (thin lines) behind it forming a circular ring.

(ii) Search Mechanism: It utilizes a balance between exploration and exploi-
tation. A wormhole mechanism is employed; a wormhole is a theoretical
passageway connecting two points in spacetime. Salps move in different
directions depending on their positions in the chain.

(iii) Application Suitability: It is especially helpful for solving complicated
optimization problems involving high dimensionality owing to its diverse
search capabilities.



FIGURE 15.2  Quest for food by marine creature salps, and the corresponding swarm robotic algorithm: (a) leader salp, (b) follower salp, (c) salp chain,

and (d) the algorithm formulated by adopting the collective activities of marine creature salps.
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15.3.2  MAIN STEPS OF THE SSA ALGORITHM

The steps of this algorithm are shown in Figure 15.2d. The stages in the salp
algorithm are: start, initialization of the robot population, calculation and sort-
ing of fitness values, setting the food fitness value and food position as the best
parameters, updating the iteration parameter, leader and follower salp positions,
followed by exploration versus exploitation. If the stopping condition is reached,
the best salp is obtained and the process stops. Otherwise, the process goes back
to the stage of sorting fitness values. The algorithmic procedures are clarified
below (Hegazy et al. 2020):

i. Initialization of Robot Population: Each robot in the swarm is initialized
as a salp. To get started, it is assigned a random position within the search
space.

ii. Fitness Value Calculation and Sorting: The fitness value of the initial salp
population is determined. The fitness values obtained are sorted.

iii. Setting the Food Fitness and Position: The food fitness is set as the best salp
fitness. The food position is considered the optimal salp position.

iv. Iteration Parameter Update: The iteration parameter represents the current
number of cycles or loops that the algorithm has undergone during the opti-
mization process. This number is updated.

v. Leader Update: The leader salp position is updated. The updating is based
on the best solution found so far, attracting the other salps toward the opti-
mal area.

vi. Follower Update: The follower salps update their positions by following the
movement of the salp in front of them. Hence, the chain-like structure of
salps is maintained.

vii. Exploration vs. Exploitation: The algorithm dynamically balances between
searching an extensive area (exploration) against concentrating on promis-
ing regions (exploitation). Balancing is achieved by adjusting the parameters
based on the progress of the iteration.

15.3.3  APPLICATIONS OF THE SSA ALGORITHM

Apart from its use in robot path planning, and cooperative manipulation, the SSA
algorithm is also useful for the optimized placement of sensors in a network.

i. Robot Path Planning: The SSA algorithm optimizes the route for efficient
movement and collision avoidance of robots. It thus helps a group of robots
to navigate through a baffling and convoluted environment. In order to opti-
mize the search for food sources in a distributed robot system, the SSA
algorithm simulates the foraging behavior of salps.

ii. Cooperative Manipulation: Multiple robots are coordinated to manipulate
an object collaboratively. For this purpose, a chain-like formation is utilized
to maintain stability and adjust positions.
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iii. Sensor Network Deployment: The placement of sensors in a network is
optimized to achieve maximization of coverage area and minimization of
energy consumption.

15.3.4 ADVANTAGES OF THE SSA ALGORITHM

Special characteristics of the SSA algorithm can be beneficially exploited to get
meaningful results in swarm robotics.

i. Simplicity of the Basic Algorithm Concept. Conceptually, the SSA algo-
rithm is relatively easy to understand. Putting the concept into practice also
requires minimal effort.

ii. Flexibility of the Algorithm: The algorithm is adaptable to different swarm
robotics tasks. The parameters of the algorithm are varied, and additional
constraints are incorporated to facilitate adaptation.

iii. Global Search Capability: Salps form chain-like structures called aggre-
gates. The chains comprise many identical salps. This structure allows for
efficient exploration of a large search space.

15.3.5 LIMITATIONS OF THE SSA ALGORITHM

To prevent failures during the application of the algorithm and minimize the likeli-
hood of obtaining erratic results, the limitations of the SSA algorithm must not be
overlooked.

i. Parameter Tuning: The performance of the SSA algorithm is sensitive to
parameter values. Careful tuning of parameters is essential for specific
applications.

ii. Potential for Local Optima: In certain scenarios, the algorithm gets stuck in
a local optimum. This happens when it is not properly designed.

15.4 COMPARISON OF GA WITH PSO ALGORITHM

From this section onward, we attempt to make a series of comparisons among the
swarm robotic algorithms that we have discussed so far (Warnakulasooriya and
Segev 2025). Comparison is a powerful learning technique that can be leveraged to
discover a new breadth of view and develop a correlational vocabulary. By making
comparisons, one can acquire a better overall view of the entire landscape of these
algorithms. Comparisons encourage analysis of information and bring to the fore-
front the subtleties and nuanced differences among algorithms. They foster critical
thinking, thereby preparing us to make the most suitable choices compatible with the
needs and priorities of the situation, while also providing a clear, cogent, and articu-
late explanation for the decisions made.

We start by comparing Genetic Algorithm (GA) with the PSO algorithm (Wihartiko
etal. 2018). Both GA and PSO algorithm are population-based optimization algorithms.
The key difference between them lies in their approach to exploring the search space.
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TABLE 15.1
Genetic Algorithm and PSO Algorithm

Specific Feature/

Aspect
SI. No. Considered Genetic Algorithm PSO Algorithm
1 Evolutionary GA draws inspiration from The PSO algorithm is based on the
inspiration biological evolution, utilizing collective behavior of bird flocks or
concepts such as selection, fish schools.
crossover, and mutation to
generate new solutions.
2 Exploration vs. GA generally has a stronger PSO tends to focus more on
exploitation exploration capability due to its  exploitation. Although it rapidly
diverse genetic operations. The ~ converges toward a solution, it
stronger exploration capability ~ potentially gets stuck in a local
allows it to search a wider optimum.
range of solutions.
3 Complexity in GA can sometimes be The PSO algorithm typically has a
implementation considered more complex to simpler structure with fewer
implement due to the need to parameters to adjust.
design appropriate crossover
and mutation operators.
4 Suitable situations GA is used in situations where: ~ PSO is used in cases where:
in which (i) A large, complex search (i) A fast convergence to a solution
particular space with diverse solutions and high computational efficiency

algorithms are
preferred

is to be explored

(ii) The problem involves
discrete variables or
constraints.

(iii) Premature convergence to a
local optimum is desired to
be avoided.

are needed.

(ii) There are continuous variables
and a well-defined search space
in the problem.

(iii) A simple implementation with
fewer tunable parameters is
desirable.

GA relies more on survival of the fittest through crossover and mutation operations.
The PSO algorithm mimics the collective behavior of a swarm. In the PSO algorithm,
the individuals adjust their movements based on their own best position and the best
position in the swarm. The PSO algorithm generally leads to faster convergence but is
potentially more prone to getting stuck in local optima compared to GA. GA is better
for complex problems with diverse solutions. The PSO algorithm is more suitable for
faster convergence in continuous optimization problems. Table 15.1 presents a com-
parison between the GA and the PSO algorithm with respect to specific points.

15.5 COMPARISON OF PSO, ABC, AND ACO ALGORITHMS

When comparing PSO, artificial bee colony (ABC), and ant colony optimization
(ACO) algorithms, the significant difference lies in their inspiration from natural
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phenomena: PSO mimics bird flocking behavior, ABC simulates honeybee forag-
ing, and ACO models the foraging patterns of ant colonies (Selvi and Umarani 2010;
Arora et al. 2023). Each algorithm has distinct strengths and weaknesses in various
optimization scenarios. Generally, the PSO algorithm is better for continuous opti-
mization problems. The ACO algorithm excels in combinatorial optimization tasks
due to its path-building nature. The ABC algorithm is effective in both domains,
depending on the complexity of the problem.

The differences among these algorithms are pointed out in the context of their
search mechanisms, strengths, weaknesses, and applications, as outlined in Table 15.2.

15.6 COMPARISON OF FIREFLY, ABC, AND ACO ALGORITHMS

When comparing firefly, ABC, and ACO algorithms, it is found that the main differ-
ences lie in their biological inspiration: The Firefly algorithm (FA) shadows the flash-
ing behavior of fireflies. Brighter fireflies attract less bright ones. The ABC algorithm
simulates the foraging behavior of honeybees. The ACO algorithm models the way
ants find food using pheromone trails (Lazarowska 2023). Each algorithm has its own
lustiness and frailty depending on the optimization problem at hand. The comparisons
among the three algorithms are made in Table 15.3 with reference to the mechanism of
movement of individuals, strengths/weaknesses, and from an all-inclusive viewpoint.

15.7 COMPARISON OF BFO, ABC, AND ACO ALGORITHMS

BFO, ABC, and ACO are all swarm intelligence algorithms, but they differ in their

ways of drawing inspiration from nature. The BFO algorithm takes the lesson from

bacteria searching for food. The ABC algorithm simulates the foraging behavior of

honeybees. The ACO algorithm replicates the pathfinding behavior of ants. Distinct

propitious and unpropitious aspects are observed in their optimization approaches.
The important differences are brought out in Table 15.4.

15.8 COMPARISON OF FIREFLY AND BFO ALGORITHMS

Both the firefly and BFO algorithms are swarm intelligence algorithms that are used
to control robot swarms. Both these algorithms gain insight from different biolog-
ical behaviors. Generally, the FA is more suitable for swarm robotic tasks where
precise localization and coordinated movement are given a high priority. The BFO
algorithm excels in handling dynamic environments with uncertain conditions. Its
ability to adapt and explore a wider search space effectively is beneficial in these cir-
cumstances. Distinct favorable and unfavorable traits of these algorithms are noticed
depending on the intended application.
The differences between these algorithms are given in Table 15.5.

15.9 COMPARISON OF SSA, ABC, AND ACO ALGORITHMS

All three algorithms are swarm intelligence algorithms used for optimization prob-
lems. They differ in the stimulus for encouragement they receive from nature. The
salp algorithm follows the movement of salps in the ocean. The ABC algorithm



TABLE 15.2

PSO, ABC, and ACO Algorithms

SI. No.

Specific Feature/
Aspect
Considered

Basic search
mechanisms of the
algorithms

Advantages and
strengths of
algorithms

Disadvantages and
weaknesses of
algorithms

Typical application
examples of
algorithms

PSO Algorithm

The particles update their positions by
considering their own best position and
the best position discovered by the swarm,
adjusting their velocities accordingly to
navigate toward the optimal solution
within the search space.

Easy in implementation, fast in
convergence, and performs well in
continuous optimization problems.

The algorithm becomes trapped in local
optima, necessitating careful parameter
tuning to solve complex problems.

Processing of images, optimization of
engineering designs, optimization of
functions.

ABC Algorithm

The food sources are updated
based on the quality of their
nectar or the fitness function.

Effective in solving complex
problems, balancing
exploration and exploitation.

The algorithm is slower than
other algorithms for certain
problems. Also, it is sensitive
to the selection of parameters.

Clustering of data, scheduling
problems, and selection of
features.

ACO Algorithm

The ants probabilistically choose paths. The
path selection is based on pheromone levels.
The best paths accumulate more pheromone.

Excellent for combinatorial optimization
problems, and capable of finding near-optimal
solutions in complex constraint scenarios.

The algorithm has a low efficiency for solving
high-dimensional problems. It gets stuck in
suboptimal solutions if the pheromone update
is not properly managed.

Traveling Salesman Problem, Route
Optimization, and Resource Allocation.
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TABLE 15.3

Firefly, ABC, and ACO Algorithms

Specific Feature/
Aspect

SI. No. Considered

1 Movement
mechanisms of
individuals

2 Advantages and
strengths of
algorithms

3 Disadvantages and
weaknesses of
algorithms

4 Overall comparison
of algorithms

Firefly Algorithm

Individual fireflies move toward brighter
or better solutions. The strength of
attraction between individuals decreases
as the distance between them increases.

Problems with complex search spaces are
easily solved due to the attraction
mechanism, which serves as the basis of
the algorithm. The algorithm can also
handle continuous optimization problems
well.

The algorithm gets stuck in local optima
whenever parameter tuning lacks
optimality.

For problems requiring global exploration
with a focus on finding better solutions
based on attractiveness, like feature
selection, the firefly algorithm is a good
choice.

ABC Algorithm

Bees explore the search space. They update
their positions based on the quality of their
current food source.

The algorithm is efficient in local search.
Additionally, it is able to balance
exploration and exploitation, leveraging its
diverse bee types.

The algorithm is sensitive to the selection of
parameters. It may not perform well in
high-dimensional spaces.

For problems with well-defined local search
requirements, where exploitation of good
solutions is crucial, the ABC algorithm is
more suitable.

ACO Algorithm

Ants update pheromone levels on
potential paths. The pheromone levels
influence the probability that other ants
will choose those paths.

The algorithm is effective in finding
optimal paths in graph-based problems.
Combinatorial optimization issues are
efficiently handled.

The algorithm suffers from stagnation if
the pheromone updates are not carefully
managed.

If a problem involves finding optimal
paths in a graph structure, the ACO
algorithm is preferable.
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TABLE 15.4

BFO, ABC, and ACO Algorithms

Specific Feature/
Aspect

SI. No. Considered

1 Search
mechanisms of
algorithms

2 Advantages and
strengths of
algorithms

3 Disadvantages and
weaknesses of
algorithms

4 Summary

BFO Algorithm

This algorithm utilizes chemotaxis, a
process by which cells move in a
directed manner toward a chemical
gradient. Occasional random
perturbations occur to prevent
stagnation.

This algorithm is effective in solving
problems with complex search
spaces. Its diverse local search
mechanisms and ability to escape
local optima are helpful in these
situations.

This algorithm is sensitive to
parameter tuning. So, a careful
adjustment of parameters is
necessary for specific problems.

The BFO algorithm displays strength
in its ability to explore diverse areas
of the search space.

ABC Algorithm

This algorithm employs a combination
of local search, performed by
employed bees, and global search,
carried out by onlooker bees, with
scout bees responsible for diversifying
the search space.

This algorithm strikes a good balance
between exploration and exploitation.
The distinct roles of bee types serve
as a blessing in this regard. It
performs correctly in multimodal
optimization problems.

This algorithm suffers from premature
convergence if not properly managed.
High-dimensional problems are
afflicted by such difficulties.

The ABC algorithm excels at balancing
local and global search.

ACO Algorithm

It iteratively updates pheromone levels on
potential solutions. The updating of
pheromone levels guides subsequent ants
to follow better paths, benefiting from
the accumulated pheromone strength.

It demonstrates efficiency in handling
combinatorial optimization problems,
such as routing. In routing problems, the
graph structure is well-defined.
Therefore, a good solution quality is
achieved with a relatively simple
implementation.

It gets stuck in local optima if pheromone
updates are not carefully designed.
Large-scale problems experience this
setback.

The ACO algorithm is suited for
graph-based optimization problems. In
these problems, the path selection is a
crucial activity.
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TABLE 15.5
Firefly and BFO Algorithms

Specific Feature/

SI. No. Aspect Considered Firefly Algorithm BFO Algorithm
1 Advantages and It is efficient in finding It works well in dynamic
strengths of local optima due to the environments where changing
algorithms attraction mechanism conditions need to be
built into this algorithm. addressed. It is capable of
It performs well in tasks exploring a wider search space.
requiring precise Its random movement and
coordination and chemotaxis behavior help in this
movement patterns. exploration.
2 Applications of Planning of path, Problems of optimization in
algorithms avoidance of obstacles, complex environments,
localization of target, deployment of sensor networks,
and aggregation of and dynamic task allocation.
swarm.

simulates the behavior of honeybees looking for food. The ACO algorithm mirrors
the pathfinding procedure of ant colonies. Distinct optimism and pessimism are seen
when applying these algorithms in different scenarios. Generally, the SSA algorithm
is better for complex, high-dimensional problems. Its diverse search strategy is the
main cause for this superiority. The ABC algorithm is effective in facing problems
with well-defined search spaces. The ACO algorithm outshines other algorithms in
finding optimal paths in graph-based problems.
The chief differences among these algorithms are listed in Table 15.6.

15.10 DISCUSSION AND CONCLUSIONS

Progress in BFO and salp swarm robotic algorithms was reviewed in this chap-
ter. Table 15.7 presents a brief sum-up of Chapter 15. In swarm robotics, several
robots are organized for search and rescue missions. Each robot in the swarm
has its own sensing, processing, and communication capabilities. Coordination
of a large number of tasks among robots engaged in teamwork demands efficient
multi-robot task allocation or MRTA methods (Khamis et al. 2015; Chakraa et al.
2023). Several challenges are posed by real-life MRTA applications, e.g., simulat-
ing fleets of robots in a congested shopping center (Surma et al. 2021). Disaster
response, environment monitoring, and reconnaissance operations deserve special
mention. These challenges are encountered in the form of dynamically occur-
ring tasks that have deadlines. Robots with payload capacity and ferry range con-
straints are involved. Such combinatorial optimization problems have been solved
by several approaches (Park et al. 2022).



TABLE 15.6
The SSA, ABC, and ACO Algorithms

SI. No.

Specific
Feature/
Aspect
Considered

Inspiration of
algorithms

Search
mechanisms
of algorithms

Application
suitability of
algorithms

SSA Algorithm

This algorithm is created by closely
watching the movement patterns
of salps in the ocean. It applies
their chain-like formations during
navigation and foraging.

This algorithm utilizes a balance
between exploration and
exploitation through a wormhole
mechanism. The salps move in
different directions depending on
their position in the chain.

It is particularly useful for solving
complex optimization problems
with high dimensionality. Its
diverse search capabilities are
beneficially utilized to address
these cases.

ABC Algorithm

This algorithm is developed by copying
the foraging behavior of honeybees. The
roles played by employed bees, onlooker
bees, and scout bees contribute to the
common aim.

This algorithm employs a combination of
local search, using employed bees, and
global search, via onlooker bees, to
explore the solution space. Local and
global searches unite to form an efficient
search strategy.

It is well suited for dealing with problems
having clearly defined search spaces.
Also, it is befitting to tackle issues where
balancing between exploration and
exploitation is compulsory.

ACO Algorithm

It moves in the way ants communicate through
pheromone trails to find the shortest path to a
food source.

The ants iteratively update pheromone levels on
potential paths. By such updating, valuable
guidance is provided to subsequent ants, leading
to better solutions and preventing the wastage of
time in further efforts required to find the path if
it has not been previously decided and marked
with pheromone by predecessor ants.

It is commonly used for solving path planning
problems. When dealing with graphs and
network optimization, it supersedes other
algorithms in many respects.
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TABLE 15.7

Takeaways from This Chapter at a Glance

SI. No.
1

Takeaway

Summary

BFO algorithm

Salp algorithm

BFO vs Salp

algorithm

Keywords and
ideas to
remember

Explanation

This chapter described the bacterial foraging optimization (BFO) and salp swarm algorithm (SSA) used in
robotic path planning and navigation. Detailed comparisons were made among the GA and PSO algorithms;
the PSO, ABC, and ACO algorithms; the firefly, ABC, and ACO algorithms; the BFO, ABC, and ACO
algorithms; the firefly and BFO algorithms; and the SSA, ABC, and ACO algorithms.

The BFO algorithm mimics the foraging behavior of E. coli bacteria, including chemotaxis (movement toward
nutrients), swarming (clustering around food sources), and a reproduction, elimination, and dispersal
mechanism. A population of virtual bacteria navigates the search space, updating their positions based on local
information about the nutrient (the optimal solution) and adjusting their movement according to chemotaxis,
swarming, and reproduction steps.

The SSA is motivated by the schooling behavior of salps, where individuals follow a leader and maintain a
certain distance from each other while moving in a coordinated manner. A population of salps is represented as
points in the search space, with a leader salp guiding the movement of the others. The salps update their
positions based on a balance between exploration (random movement) and exploitation (moving toward the
best solution found so far).

The BFO algorithm tends to excel in exploration due to its random movement during chemotaxis and dispersal
phases, while SSA strikes a good balance between exploration and exploitation by adjusting the influence of
the leader salp. The BFO is relatively simpler to implement, while SSA requires more fine-tuning of
parameters due to its leader-follower structure.

Bacterial foraging optimization algorithm, salp swarm algorithm, comparison of genetic algorithm and PSO
algorithm; PSO, ABC, and ACO algorithms; firefly, ABC, and ACO algorithms; BFO, ABC, and ACO
algorithms; firefly and BFO algorithms; SSA, ABC, and ACO algorithms.
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THE RoBoTIiC RESCUE TEAM

The robotic team

Is held in high esteem

On accomplishing the rescue scheme
Very dreadful it may have seemed
But when the distressed screamed
Robots brought a hopeful gleam
Miraculous, real, and supreme.

Although the swarm robotic technology has a promising future, it must be ardently
and categorically declared that the technology is relatively new and there is ample
scope for improvement before it is widely accepted and becomes commonplace in
solving practical, real-life problems. The technology is considered to be in its infancy.
Currently, most swarm robotic demonstrations are limited to controlled laboratory
conditions. Moreover, the research work is primarily focused on developing founda-
tional concepts. In this early childhood stage of the technology, the design of control
algorithms and suitable hardware platforms for swarm robots is a hot topic. The
technical hurdles that need to be addressed include managing interactions among
a large number of robots, ensuring decentralized decision-making, and overcoming
the uncertainties of the environment. The development of Al techniques, particularly
distributed learning algorithms in AI, which require limited computation and can
operate with CPUs and Al-optimized processors in small, reasonably priced robots,
will enable robot swarms to gradually increase their autonomy (Dorigo et al. 2021).
An emerging field of interest concerns swarms of flying robots. This burgeoning
field offers unique capabilities, including aerial mobility, rapid maneuverability, and
the ability to cover large areas quickly, thereby providing advantages such as afford-
ability, multitasking, scalability, resilience, and flexibility (Alqudsi 2024; Alqudsi
and Makaraci 2025).

WELCOMING THE ERA OF AI RoBoTICS

Robots working in labor-intensive jobs, robots working in hazardous
conditions

Robots guiding vehicles on roads and assisting doctors in critical
surgical operations

Affable, cordial, and well-behaved robots are working everywhere

To look after human security and welfare

Robots working side-by-side with humans

With the enthusiasm of a mechanical acumen

To evolve a happy robot-cum-man society

Filled with joy and gaiety

Let’s unify manly and robot efforts

To bring a new quality of life and comforts

Robots are good friends, sharing emotions

In moments of stress and commotion

Welcome to the age of Robotics and Al
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Gazing from the horizon in the blue, expansive blue sky
Let our thoughts fly into dreams and soar high

And think of a beautiful, peaceful earth

Drenched in merriment and mirth!
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Appendix

Interactive Mini Glossary of
Al Algorithms and Related
Terms for Robotics in
Question—-Answer Format

AlexNet: It is a deep learning algorithm. What specifically does it represent? It is
a convolutional neural network architecture. What is the purpose of this
architectural design? It is designed for image recognition and classification.
What are the applications of AlexNet in robotics? Tt is utilized in robotics
for object detection, scene understanding, and autonomous navigation. It is
also used to guide robotic arms in picking objects or performing complex
manipulations.

Ant Colony Optimization: It is a pathfinding algorithm inspired by the foraging
behavior of ants. What is its use in robotics? It is a popular choice for robot
path planning. How does it work? In this algorithm, the robots find optimal
paths by simulating pheromone trails. Is the algorithm adaptable? Yes, the
algorithm is adaptable to dynamic environments. For adaptation, phero-
mone levels are updated based on the current state of the environment.

Artificial Bee Colony: It is a swarm intelligence optimization technique. How many
types of bees are differentiated in this technique? In this technique, three
types of artificial bees—employed, onlooker, and scout—are used to search
for food sources. How do the bees find the best path? The bees communi-
cate their findings to other bees to find the best path. How is the method
applied in robotics? The technique is particularly effective for robot path
planning. It optimizes both the robot’s path length and the smoothness of
the path. It is also used for multi-robot path planning, ensuring their colli-
sion-free movement.

Artificial Potential Field Algorithm: It is a path-planning technique. How is the
robot’s environment simulated? The robot’s environment is simulated as a
potential field. How does the algorithm guide the robot? It guides a robot
toward a goal by an attraction-repulsion mechanism, attracting it toward the
goal and repelling it away from obstacles.

A* Search Algorithm: It is a pathfinding algorithm used to find the shortest path
between two points in a graph. Are obstacles and constraints considered?
Yes, the barriers and limitations on the robot’s path are duly taken into con-
sideration. What special tool does the algorithm use? The algorithm works
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by leveraging a heuristic function to estimate the cost of reaching the goal
from any given node.

Backpropagation: It is a core component of neural networks. Where is it used in
robotics? It is used to train robots to learn and make decisions. How does
the robot learn? The robot learns by adjusting network weights to minimize
errors between the predicted and actual outputs.

Bacterial Foraging Optimization: It is an algorithm designed to solve optimization
problems. What are these problems? These problems include robot path
planning, obstacle avoidance, and the coordination of a swarm of robots.
What does the algorithm do? The algorithm enables robots to search for
optimal solutions in dynamic environments efficiently. What natural phe-
nomenon does the algorithm mimic? It operates by mimicking the foraging
behavior of E. coli bacteria.

Bayesian Inference: It is a statistical method that utilizes Bayes’ theorem as the
guiding principle for operation. How is Bayes’ theorem applied? Bayes’
theorem is used to update the probability of a hypothesis or belief by com-
bining prior knowledge with new sensor data received from the robot. The
probability updating yields an estimate of the posterior probability, which
represents the updated belief about the robot’s state. In what ways does
Bayesian inference help robots? Bayesian inference allows robots to learn,
adapt, and perform tasks in changing environments.

Branch-and-Bound Scheme: It is a general algorithm design paradigm. What is it
used for? It is used for solving discrete or combinatorial optimization prob-
lems. How does it operate? Its operation is based on the systematic explo-
ration of a tree of candidate solutions. As it progresses, it prunes branches
that cannot contain the optimal solution. For pruning the branches, it uses
bounds, namely the upper and lower estimates. Thereby, it reduces the
search space. The reduction of the search space improves the efficiency of
finding the optimal solution.

Bug Algorithms: These are a class of simple, sensor-based path-planning techniques.
How are they exploited in robotics? They are applied by robots for navigat-
ing unknown environments. By using these algorithms, the robots can move
in an organized manner without needing a map of the environment. What
are the principal measurements and data on which robots depend? For
their motion, the robots rely on sensor measurements for guidance. Local
sensor data, such as contact or range sensors, are used by robots to deter-
mine their positions and the presence of obstacles.

CNN: It is an artificial neural network for analyzing visual data. In what fields does
it give excellent performance? It excels at recognizing patterns and features
in images. What are the main tasks at which CNN is highly skilled, and
where are its capabilities used in robotics? Three primary image-related
tasks are expertly handled by it: object detection, image classification, and
scene understanding. Due to these beneficial features, it is used in robotics
for obstacle avoidance based on real-time camera images, enabling robots
to navigate and plan their paths.

Convolutional Neural Network: See CNN.
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Decision Tree: It is a supervised machine learning technique. Where does the name
‘decision tree’ come from? The name ‘decision tree’ originates from its
tree-like structure. What are the parts of the decision tree? The tree has a
root node, internal nodes, branches, and leaf nodes. What are the functions
of the different parts of the decision tree? Each internal node of the tree
represents a test carried out on an attribute. Each branch represents the out-
come of the test. Each leaf node represents the final outcome or prediction.
What types of tasks is the decision tree used for? The decision tree is used
by robots for executing both classification and regression tasks. It enables
robots to classify situations or predict actions. Classification predicts cat-
egories. Regression predicts continuous values.

Dijkstra’s Algorithm: It is a pathfinding algorithm used in robot navigation. What
does the algorithm give to robots? It provides them with efficient and col-
lision-free path planning. How is the pathfinding implemented? The path-
finding is done by transforming the robot’s environment into a graph. The
shortest path between two points is easily found once a graph is drawn.

Firefly Algorithm: It is an optimization algorithm used in robotics for path plan-
ning. How are the robots represented in this algorithm? In this algorithm,
the robots are described as fireflies. What rule do the robot fireflies follow,
and what do they achieve? The less bright robot fireflies move toward the
brighter ones. Following this brightness rule, the robot fireflies move toward
brighter or better locations in the environment to establish a suitable path.

Generalized Voronoi Diagram: It is a roadmap that provides a comprehensive global
overview of the robot’s environment. What does a global overview show?
The global overview shows all possible paths in an environment containing
obstacles. How is the depiction of paths helpful? An inspection of all feasi-
ble paths facilitates efficient path planning by robots. They can focus on the
free space or areas of maximum clearance from obstacles. What other facil-
ities and services does the generalized Voronoi diagram provide? Besides
path planning, the Voronoi diagram enables stealthy navigation. The robots
move surreptitiously, minimizing their visibility. The generalized Voronoi
diagram is also used for surveillance and area coverage.

Genetic Algorithm: It is a type of evolutionary algorithm that simulates the biologi-
cal process of natural selection to find optimal solutions to problems. How
does it find optimal solutions to problems, such as robot path planning? It
finds optimal solutions by simulating this natural selection process. How
does the algorithm work? The algorithm operates by iteratively evolving
a population of potential solutions, known as chromosomes. It advances
through selection, crossover, and mutation, always aiming for the fittest
individuals.

Hidden Markov Model: It is a probabilistic model. In this model, the observed
data are generated by a sequence of hidden states. What is meant by hidden
states? The hidden states refer to the robot’s position or environmental con-
ditions, as determined by its sensors. These hidden states are inferred based
on the observed data. In what ways does the hidden Markov model assist
robots? The hidden Markov model enables a robot to estimate its position
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or location in an unknown environment based on the sensor readings it has
acquired.

Image-of-Interest Detection: It is an algorithm that uses computer vision tech-
niques. What is its main purpose? Its purpose is to identify and locate spe-
cific objects or regions of interest within images or videos. What does it
do for robots? It enables robots to understand their surroundings. Hence,
robots navigate, manipulate objects, and perform tasks that require visual
perception.

ISODATA: It is an algorithm to find compact clusters. How does it work? It works
by grouping data points into clusters based on similarity. During operation,
it iteratively updates cluster representatives. The updating is based on the
mean of the vectors assigned to each cluster. How is data clustering utilized
in robotics? In robotics, this clustering technique is used for object recogni-
tion, scene segmentation, and data analysis.

k-Means Clustering: It is an unsupervised machine learning algorithm. What is it
used for? It is used to partition a given dataset into k clusters. What is the
basic partitioning approach of the algorithm? The approach for partition-
ing involves minimizing the sum of squared distances between each data
point and its assigned centroid. What does the symbol k in this algorithm
stand for? The symbol k represents a user-defined parameter, denoting the
desired number of clusters. What is the relevance of the algorithm in robot-
ics? In robotics, it groups similar data points, such as robot locations or
sensor readings, into clusters. Thus, it facilitates the coordinated movement
of a group of robots.

NAS: It is an automated approach to designing efficient and high-performing neu-
ral network architectures. What is its specialty? It represents a departure
from the manual, trial-and-error approach. It leverages learning algorithms
and deep learning techniques to find optimal architectures without manual
intervention. How is the use of the NAS approach beneficial? Using NAS
can lead to the discovery of architectures that outperform hand-crafted
designs. How are the designs evaluated? The designs are evaluated in terms
of performance, efficiency, and resource utilization.

Neural Architecture Search: See NAS.

Neural Networks: These are algorithms inspired by the functioning of the human
brain. What is the unique feature of these algorithms? Their exceptional
feature is the ability of learning and making predictions from data. What
role do these algorithms play in robotics? These algorithms enable robots
to perceive and understand their environment using techniques such as
computer vision. They allow robots to make autonomous decisions based
on learned patterns and real-time data. In this way, they aid in developing
sophisticated control systems for robot movement. These include robot path
planning and manipulation.

Particle Swarm Optimization: It is a population-based stochastic algorithm. What
natural phenomenon does this algorithm impersonate? It mimics the
social behavior of birds flocking or fish schooling. How is the solution to
a problem found? Each potential solution to the problem is represented as
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a particle with a certain velocity. Particles move through the search space,
updating their velocity and position. The update is based on two criteria:
their own best position and the best position of the swarm. The global opti-
mum is found by iteratively updating the positions of the particles. Where is
this algorithm applied in robotics? The algorithm is used to find the optimal
path for robots in a given environment. It is also used to optimize various
aspects of robot behavior, including task allocation and resource manage-
ment. Furthermore, it is used for target tracking where robots need to find
and track specific objects or locations. It is particularly well-suited for coor-
dinating the behavior of multiple robots in a swarm to achieve a common
goal.

PID Algorithm: It is a feedback control mechanism. How does this mechanism oper-

ate? It operates within a closed-loop system to regulate the robotic system’s
output. It works by continuously adjusting a control variable based on the
error between the desired set point and the actual value. During this work,
it utilizes the proportional, integral, and derivative terms. The proportional
(P) term responds to the current error. The integral (/) term accounts for
accumulated error over time. The derivative (D) term responds to the rate
of change of the error. Where are PID controllers used in robotics? PID
controllers are used to control the speed, position, and orientation of robotic
arms, wheels, and other actuators, enabling motion control. They are also
used to maintain a robot’s path, speed, and heading, enabling autonomous
navigation. Another use of PID controllers is to control the force exerted by
a robotic gripper or other actuators during manipulation. A further use of
these controllers is to maintain a specific temperature in a robotic system
for temperature control.

PNAS: It is a method for automatically designing convolutional neural networks.

What is its functional approach? It works by sequentially searching the
space of cell structures in a step-by-step manner. In the course of work, it
optimizes cell structures. These structures are the building blocks of larger
networks. This approach begins with simple models and progresses to more
complex ones. It often leads to the discovery of CNN architectures that
outperform those designed manually.

Probabilistic Roadmap: It is a path-planning technique for robots. What is its gov-

erning principle? It constructs a graph of possible paths by randomly sam-
pling nodes in free space and connecting them. Thus, it enables efficient
pathfinding between a start and goal configuration while avoiding obstacles.
It starts by randomly sampling points or nodes within the robot’s free space
(sampling). In this space, the robot can move without colliding. Then the
algorithm determines if a robot can move safely and smoothly between them
(connectivity). If two nodes are connected, an edge or connection is created
between them, forming a roadmap through graph construction. Then, the
algorithm can efficiently find paths between a start and goal configuration
by searching the graph, a process known as pathfinding.

Progressive Neural Architecture Search: See PNAS.
Proportional-Integral-Derivative Algorithm: See PID algorithm.
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Rapidly Exploring Random Tree Algorithm: It is a probabilistic motion planning

algorithm. What is its basic working principle? The algorithm works by
iteratively expanding a tree of possible paths from a starting point, known
as the root of the tree. Then it iteratively generates random samples (points)
within the search space. For each new sample, the algorithm identifies the
nearest node in the existing tree, called the nearest neighbor. A new node
is added to the tree and connected to the closest neighbor. Thereby, the tree
is effectively extended toward the randomly sampled point (tree extension).
The process continues until the tree reaches the goal or a desired number
of iterations are completed. At this point, a path is extracted from the tree
by tracing back from the goal to the starting point. This process is known
as pathfinding. RRT handles obstacles by ensuring that the tree nodes
and paths do not collide with obstacles (obstacle avoidance). How is this
algorithm used in robotics? It is used in robotics for finding paths through
complex, high-dimensional spaces. It is particularly suitable for spaces
with obstacles and non-holonomic constraints. Such constraints restrict the
velocities of a system, rather than its positions. They are not integrable into
the position constraint.

R-CNN: It is a type of machine learning model. What are its primary features?

R-CNN excels at identifying and localizing objects within images or videos.
It leverages the power of CNNs, which are adept at extracting features from
visual data. What special technique does R-CNN use? The R-CNN uses a
method called region proposals to identify potential object regions in an
image. Once these regions are proposed, CNNs extract features from them.
These features are then used to classify the objects within those regions.
R-CNN also refines the bounding boxes around the detected objects. Thus,
it ensures accurate localization of objects. What are the uses of R-CNN?:
It is used for object detection and localization in computer vision. It is used
in robotics for object recognition and scene understanding. R-CNNs are
utilized in self-driving cars for object detection and lane-keeping purposes.
Warehouses or hospitals use R-CNNs to identify and pick up objects. In
industrial automation, R-CNNs are used for quality control and inspection
tasks in manufacturing.

Region-Based Convolutional Neural Network: See R-CNN.

Salp:

It is a population-based optimization algorithm. What biological phenom-
enon does it imitate? It mimics the swarming behavior of salps. What
are salps? The salps are marine organisms that move in chains to forage
for food. What is the working approach of the algorithm? The algorithm
employs a leader-follower approach. The leader salp explores the search
space, and the follower salps follow the leader’s path. The salps iteratively
refine their positions to find the optimal solution. What role does this algo-
rithm play in robotics? The algorithm is used to find optimal paths for
robot movements in dynamic and complex environments, known as path
planning. It is used to assign tasks to robots in a multi-robot system. It is
also used in optimization engagements to achieve efficiency and optimize
resource utilization, including task assignment. Another use is to optimize
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various robotics-related parameters, such as robot arm movements, sensor
placement, and control algorithms, in robotics optimization.

Scale-Invariant Feature Transformation: See SIFT.

Self-Organizing Map It is a type of artificial neural network. What is its primary
objective? It helps to visualize and cluster high-dimensional data. How
does it function? It functions by mapping the data onto a lower-dimensional
grid, typically a 2D grid. During data mapping, relationships between data
points are preserved. It is a type of unsupervised learning algorithm. How
is a self-organizing map utilized in robotics? The algorithm is used to cre-
ate maps of the environment and assist robots in navigation by identifying
regions and paths, thereby facilitating navigation and path planning. It clus-
ters similar objects together, making it easier to identify and classify objects
in the robot’s environment. This clustering is called object recognition. It
detects unusual patterns or behaviors in the robot’s sensor data, alerting the
robot to potential problems through anomaly detection. It helps visualize
complex sensor data, making it easier for humans to understand the robot’s
environment and behavior through data visualization.

Semantic Parsing: It is the process of mapping natural language, like spoken or
written commands, into a formal representation of its meaning. How is this
representation done, and what is its use? This representation is done in a
machine-understandable format. Thus, it allows computers to interpret and
act upon the meaning of the input. What are the roles of semantic parsing
in robotics? It facilitates human-robot interaction, robotic task execution,
navigation, and manipulation by enabling robots to understand and execute
human instructions. It thus makes them more intuitive and easier to control.
Hence, it enables robots to perform tasks based on natural language instruc-
tions. It helps robots to navigate to specific locations, manipulate objects, or
perform actions based on natural language commands.

SIFT: It is a powerful algorithm for extracting distinctive features from images.
What main jobs does it accomplish? It enables robust object recognition and
matching across different scales, rotations, and partial occlusions. It helps
robots identify objects in their environment. Identification is possible even
when objects are viewed from different angles or at varying scales, demon-
strating object recognition and scale invariance. How is the SIFT algorithm
applied in robotics? 1t is used to create maps of an environment and assist
robots in navigation by recognizing landmarks, enabling robotic mapping
and navigation. It is used to stitch together multiple images of a scene to
create a panoramic view, a process known as image stitching. It is used
to reconstruct 3D models of objects from 2D images, a process called 3D
modeling.

Simultaneous Localization and Mapping: See SLAM.

SLAM: It is an algorithm that enables a robot to build a map of an unknown environ-
ment (mapping) while simultaneously determining its own position (loca-
tion tracking) within that map. What help does mapping and localization
provide to robots? It enables robots to navigate and interact with unfamiliar
environments.



Appendix 309

Sliding Window Algorithm: It is an analysis and pattern recognition technique for
processing streams of data or sequences. How does it function? It func-
tions by examining the data through a fixed-size or variable-size window.
The window moves across data to find patterns, subarrays, or subsequences
that meet certain criteria within a larger dataset. For what purposes is the
algorithm used in robotics? The algorithm is used for performing image
processing and path mapping in robotics.

Support Vector Machine: It is a supervised machine learning algorithm. What are
its main uses? It is used for classification and regression tasks. How does
it perform these tasks? It performs these tasks by finding optimal decision
boundaries or hyperplanes that maximize the margin between data classes.
Where is it applied? 1t is particularly effective for object recognition, path
planning, and robot control.

Transformer Network: It is a type of neural network architecture that excels at
processing sequential data, like text or sensor data. It accomplishes the data
processing by using a mechanism called self-attention. How do robots use
transformer networks? Robots utilize transformer networks to comprehend
and respond to spoken natural language commands, as well as for speech
generation. These networks enable robots to communicate with humans
through more intuitive interactions, including speech recognition, genera-
tion, and natural language processing. They also help predict the optimal
sequence of actions for a robot to perform a task, based on the current situa-
tion and goals, facilitating action planning and sequencing. They are applied
to interpret sensor data (e.g., images, sounds) and understand the surround-
ings of the robots. In this way, they enable more autonomous navigation and
manipulation, including perception and understanding of the environment.
Furthermore, they are used to predict the optimal movements for a robot’s
arm or other actuators to perform specific tasks, such as grasping an object
or assembling parts (robotic manipulation).

VCG-16: It is a convolutional neural network architecture. It works as a powerful
type of deep learning model used for processing image data. Who devel-
oped this model? The Visual Geometry Group developed it at the University
of Oxford. Where is it used in robotics? 1t is used in robotics for image
classification, object detection, and feature extraction. How does it perform
its duties? It does so by leveraging its pretrained capabilities for such tasks.

Vector Field Histogram: It is a real-time motion planning technique in robot-
ics. How does it use sensor data? It utilizes range sensor data to compute
obstacle-free steering directions, taking into account the robot’s dynamics
and shape. What is its working principle? It works by creating a polar his-
togram of obstacle density. The areas devoid of obstacles, called valleys,
are identified. The valley closest to the target direction is selected. Thus, a
computationally efficient and robust method is provided for mobile robots to
navigate and avoid obstacles while moving toward a target.

Velocity Updates: It is the process of adjusting or modifying a robot’s speed and
direction in response to real-time information about its environment or task
requirements. How are velocity updates applied in practice? Sensors and
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controllers are used to ensure that the robot moves efficiently and safely.
Velocity updates allow robots to avoid collisions. The robots maintain sta-
bility, and any accidents are prevented. Thus, the robots adapt to obstacles,
changes in terrain, and dynamic situations.

Visual Geometry Group-16: See VGG-16.
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